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Abstract
The main goal of this work is to construct the killed rough Super Brownian Motion,
a superprocess in a white noise environment first introduced by Perkowksi and Rosati.
To achieve this, we use a Branching Brownian Motion and a novel intermediate process
called the killed mollified Super Brownian Motion. Not only does this simplify the con-
struction of Rosati et al., it may also be more aligned with biological intuition.
In order to show the uniqueness of the killed rough Super Brownian Motion, we con-
struct a solution to the associated Evolution Equation, a certain Singular Stochastic
Partial Differential Equation with a logistic non-linearity. This construction is carried
out by introducing what we shall call Paracontrolled Wild sums, a lightweight tool which
also yields the approximability of solutions and differentiability with respect to a small
parameter in the initial condition.
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Introduction
Superprocesses are measure-valued Markov processes that arise as scaling limits of indi-
vidual based models (IBMs). They have enjoyed a lot of attention since the 1980s due
to their mathematical properties and connections to biology, see [Eth00, p. xi f.] for a
focused introduction and further references.
One of the most prominent examples is the so-called Super Brownian Motion (SBM),
which arises e.g. as a high density limit of a Branching Random Walk (BRW) or of a
Branching Brownian Motion (BBM). Naturally, a lot of different processes converge to
the same Brownian limit and the resulting universality class of SBM is vast.
From a biological perspective, one should be aware of the shortcomings of each popula-
tion model: For example, classical SBM does not account for heterogeneous, non-trivial
environments.
One possible type of randomness of space could be white noise: White noise arises in
a lot of different scenarios, for example as a scaling limit of Poisson Random Measures
or of i.i.d. centred random variables with normed second moments on a dicrete grid,
see [Dom09]. White noise can also be seen as the multi-dimensional generalization of
the distributional derivative of Brownian Motion, hence gives rise to so-called Stochastic
Partial Differential Equations (SPDEs). Problematic however is the fact that white noise
suffers from rather poor (in fact negative) regularity. This leads to some nonlinear func-
tionals appearing in SPDEs to be ill-defined. Such equations are called Singular SPDEs
(SSPDEs) and can only be treated rigorously since the works of Gubinelli, Perkowski et
al., [GIP15], [GP17] and Hairer [Hai14]; see also [GIP15] for a survey on various earlier
approaches.
Recently, Perkowski and Rosati constructed the rough SBM (rSBM), an SBM in a spa-
tial white noise environment, using a BRW in a random environment (BRWRE); and
also a variant with killing at the boundary of the domain (killed rSBM, krSBM), [PR19],
[Ros19]. They subsequently showed that the evolution of the rSBM differs from the evol-
ution of the classical SBM, suggesting that the environment, in which the SBM lives,
may cause artifacts. More precisely, they showed that the krSBM in d = 2 is persistent,
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in contrast to the classical case [Eth00, Theorem 2.18] and the case including a space-
time noise [MX07].
Inspired by the works of Rosati et al., we investigate a BBM in a random environment
(BBMRE) with killing at the boundary (killed BBMRE, kBBMRE). We first consider
a BBM in a mollified white noise environment, such that the environment is given by a
smooth function rather than a distribution. We then introduce an intermediate process
called the killed mollified SBM (kmSBM), which arises if we take the superprocess limit
while leaving the mollification untouched. It turns out that the kmSBM shares a lot of
its properties with the krSBM. Particularly, we show that the kmSBM also converges
to the krSBM, if we let the mollification of the environment vanish. In fact, it may also
be biologically more reasonable to differentiate between the parameters concerning the
population and those concerning the environment; see also below.
Just as the SBM is linked to the heat equation, the killed mollified SBM is associated to
the mollified Parabolic Anderson Model (mollified PAM). Understanding the behaviour
and convergence of solutions to the mollified PAM to solutions of the unmollified PAM,
an SSPDE, is therefore crucial for understanding the convergence of the kmSBM to the
krSBM.
A different motivation for this research stems from the fact that SSPDEs often need to
be renormalized by formally subtracting infinity (made rigorous by the papers mentioned
above through a renormalizing sequence). By considering an associated IBM, we also
investigate how the abstract renormalization affects a rather intuitive population.

The above outline first requires the analysis of the Parabolic Anderson Model using
the methods of [GIP15] and extensions due to [CvZ19] to include Dirichlet boundary
conditions, see Section 1. There we also introduce Paracontrolled Wild sums in order
to construct a solution to the Evolution Equation for the killed rough Super Brownian
Motion.
In Section 2 we construct the killed mollified SBM using essentially classical arguments
which are outlined in [Eth00, Section 1.5].
In Section 3 we construct the krSBM using the kmSBM. The main difficulty lies in the
fact that one needs to be careful when it comes to the domain of the associated martin-
gale problem. Here the results of Section 1 are essential.
Finally in Section 4 we prove the persistence of the kmSBM, which differentiates it from
the classical SBM but also suggests that we can use this simpler model to understand
the behaviour of the krSBM.

Discussion

In this subsection we would like to discuss our reasons for constructing an intermediate
process, rather than going directly from the kBBMRE to the krSBM.
In our IBM we introduce two parameters: n,m ∈ N, where n concerns the population
and m the environment. The function ξm shall denote a mollification of white noise and
cm = O(log(m)) will be the renormalizing sequence. The branching mechanism of the
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BBM will then be given by Φn,m(s) := ζ+1
n,ms

2 + ζ−1
n,m, where

ζ+1
n,m(x) = 1

2

(
1 + ξm(x)− cm

n

)
, ζ−1

n,m(x) = 1
2

(
1− ξm(x)− cm

n

)
.

This means that the probability of branching into two particles upon death at the loca-
tion x ∈ (0, L)2 is ζ+1

n,m(x) and the probability of not branching is ζ−1
n,m(x).

By inspecting the branching probabilities, we see that indeed m concerns only the envir-
onment ξm−cm and n the interaction strength of the population with it. The coefficient
n will also affect the mass of each individual, their birth/death rates and the size of the
population. Hence from a biological perspective it is quite natural to consider n and m
as separate.
To put it differently: For fixed m ∈ N and large n, we consider a population model
where the environment is not perfectly homogeneous, but rather exhibits small scale
fluctuations around 1/2.
What is more, one of the main textbook examples of an empirical process following the
PAM is the growth of asexually reproducing plankton, [CM94, Chapter 1]. The growth
rate depends on several factors, e.g. the salinity and the temperature of the water.
However, as water diffuses and conducts heat, we argue that the environment is already
mollified. Consequently, it follows that the killed mollified SBM may be a reasonable
model in itself as well.
From a mathematical perspective, we run into the following problems if we were to set
m = n:
First and foremost, the probability generating function will be ill-defined. Previously,
we could fix m and consider n large enough such that ζ+1

n,m ∈ (0, 1). Now the appropriate
bound reads ∥ξm∥L∞ ≲ m1+ε a.s. for any ε > 0, hence we cannot simply choose n = m
large. Also, the martingale problem for our kBBMRE yields expressions involving

1
n
∇Tms ϕTTms ϕ,

where Tm denotes the solution operator of{
(∂t −∆)um = (ξm − cm)um in (0, T )× (0, L)2,

um(0) = um0 in [0, L]2, um = 0 on [0, T ]× ∂[0, L]2.

The limit, though, will in general not be differentiable, hence ∇Tmϕ diverges as m→∞.
Let us remark that in [PR19], Perkowski and Rosati use the fact that multiplying by
n−1 induces a gain of regularity in the discrete case, see [PR19, Lemma D.2].
Keeping in mind that the killed mollified SBM exhibits a lot of the same properties as
the killed rough SBM, we shall focus more on the kmSBM as a means of simplifying
the construction. In itself this is not entirely trivial: First we work with the state space
(0, L)2 to leverage the connection to the theory that was already developed by [CvZ19]
on the (Neumann) white noise defined on (0, L)2. However, the square comes with a
non-smooth boundary, which complicates the PDE part of our analysis.
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What is more, we want to show that the kmSBM also converges to the krSBM, if we
let m→∞. This leads us to developing the solution theory for the continuous Dirichlet
Parabolic Anderson Model on the square, which needs an extension of the theory con-
sidered in [GIP15].

In fact, by being more careful, we can see a connection between the model considered
in [PR19], [Ros19], and our model. Of course, Random Walks are related to Brownian
Motions by Donsker’s theorem. The branching mechanism in Perkowski and Rosati’s
model is given by a BRW in a random grid environment. For each grid point x there
is a centred i.i.d. random variable m−d/2ϕm(x) with normed second moment which
determines the branching mechanism through the rate |ϕm(x)− cm| and the branching
probabilities

θ+1
m (x) := (ϕm(x)− cm)+

|ϕm(x)− cm|
, θ−1

m (x) := (ϕm(x)− cm)−

|ϕm(x)− cm|
.

We recall that ∥ξm∥L∞ ≲ m1+ε for any ε > 0. So instead of setting n = m in our model,
let us formally set n = |ξm|. This yields

ζ+1
|ξm|,m(x) = 1

2

(
2ξ+
m − cm
|ξm|

)
, ζ−1

|ξm|,m(x) = 1
2

(
2ξ−
m + cm
|ξm|

)
.

Finally, our model only converges after rescaling time by n = |ξm|, which corresponds
to the rate in Perkowski and Rosati’s model. Note that cm is of lower order compared
to ∥ξm∥L∞ . Hence, the branching mechanisms above are similar, at least formally and
for large m.

Contributions

In the following, we list some of the novel insights we derived in this work:

• Extended the solution theory for the PAM of [GIP15] to include Dirichlet boundary
conditions.

• Derived the solution theory for the ’Evolution Equation for the killed rough SBM’,
a non-linear SSPDE with quadratic RHS, by using Paracontrolled Wild sums.

• Identified the killed mollified SBM, which shares a number of its properties with
the krSBM, but comes with a simpler construction and may be biologically more
reasonable.

• Identified natural scaling parameters to show convergence of the kBBMRE to the
killed mollified SBM and persistence: n: Population size, mass rescaling, time
rescaling, interaction strength with environment, m: Environmental smoothness
or -diversity, tilting due to renormalization.
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1 Framework of Paracontrolled Calculus

1 Framework of Paracontrolled Calculus

1.1 Motivation

The theory of Paracontrolled Calculus was developed by Gubinelli, Perkowski et al.
[GIP15], [GP17] as a toolset for analysing SSPDEs. Take for example the Parabolic
Anderson Model (PAM):

(∂t −∆)u = ′ξu′,

where ξ is a realisation of white noise. The product ′ξu′ is ill-defined: In dimension
d = 2, ξ will have the (Besov-Hölder-) regularity α < −1 and we can consequently
expect u to be at most of regularity α + 2 by parabolic regularity. Even if we were to
interpret the derivatives in a distributional sense, products of distributions cannot easily
be defined if their regularities do not add up to a positive constant. It turns out that
there is a paraproduct decomposition uξ = u4 ξ + ξ 4 u+ u� ξ and the term which is
ill-defined will be the resonant product �.
The idea is to propose the paracontrolled Ansatz u = u 4 ϑ + u♯ with u♯ of regularity
2(α+2). Then, u♯� ξ is well-defined, since we may assume 3α+4 > 0. The distribution
ϑ can be chosen to be ϑ = (1 − ∆)−1ξ, subject to the proposed regularity of u♯ after
considering the equation. By using a commutator result between the paraproduct 4
and the resonant product �, we arrive at the ill-defined term ξ � ϑ. If we now were to
consider the mollified noises (ξm)m∈N and (ϑm)m∈N, then ξm�ϑm would be well-defined,
but divergent as m→∞. However, by subtracting a renormalizing sequence cm, we get
ξm � ϑm − cm → Ξ for some distribution Ξ of regularity 2α+ 2. The tupel ξ = (ξ,Ξ) is
called an enhancement of white noise.
We can then prove that solutions to the mollified problem

(∂t −∆)um = (ξm − cm)um

do converge to some function u. Below we will make the above rigorous and consider a
number of questions around the PAM and its paracontrolled solutions.
Let us point out that the regularity of white noise, −d/2 − ε, ε > 0, depends on the
dimension d, [Ver11], while the gain of regularity due to the equation is fixed. This
implies that the solution theory for SSPDEs is highly dimension dependent. For this
reason, we will restrict our attention to d = 2 in most of Section 1, if not otherwise
specified.

1.2 Paracontrolled Calculus with Boundary Conditions

In this section we review the theory of Paracontrolled Calculus with Dirichlet boundary
conditions developed in [CvZ19]. For the reader’s convenience, we also introduce all of
the necessary notions and ideas. This is a shortened version of [CvZ19, Section 4].
We first introduce some useful notation for working with multidimensional odd or even
functions. Let d ∈ N, L > 0 and q ∈ {−1, 1}d. We define (∏ q) = ∏d

i=1 qi and for x ∈ Rd
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1.2 Paracontrolled Calculus with Boundary Conditions

the Hadamard product q ◦ x = (q1x1, . . . , qdxd). Let f : [−L,L]d → C. We say that f is
odd, if f(x) = (∏ q)f(q ◦ x) for any q ∈ {−1, 1}d and x ∈ [−L,L]d and that it is even, if
f(x) = f(q ◦ x). If f is periodic and odd, then f(x) = 0, whenever x ∈ ∂[0, L]2.
Let now f : [0, L]d → C. We define the odd extension of f by f̃ : [−L,L]d → C,
f̃(q◦x) = (∏ q)f(x) and the even extension by f̄ : [−L,L]d → C, f̄(q◦x) = f(x) for any
x ∈ [0, L]d and q ∈ {−1, 1}d. Let for k ∈ Nd0, νk = 2−1/2Card{i|ki=0}. Let dk : [0, L]d → R,
nk : [0, L]d → R and ek : [−L,L]d → C be given by

dk(x) =
( 2
L

) d
2

d∏
i=1

sin
(
π

L
kixi

)
, nk(x) = νk

( 2
L

) d
2

d∏
i=1

cos
(
π

L
kixi

)
,

ek(x) =
( 1

2L

) d
2

exp
(
πi

L
⟨k, x⟩

)
.

Note that the application of ·̃ to dk and the application of ·̄ to nk merely changes the
domain of the functions. Then nk is even and dk is odd on [−L,L]d, both are periodic
and smooth. We define the torus Td2L = (R/(2LZ))d. If a function on [−L,L]d can be
extended periodically to Rd, then by a slight abuse of notation we will also consider it
to be a function on Td2L. Let f : Td2L → C. We define the Fourier transform with the
scaling

FTd
2L
f(k) = ⟨f, ek⟩L2([−L,L]d,C) =

( 1
2L

) d
2
∫
Td

2L

f(x) exp
(
−πi
L
⟨k, x⟩

)
dx,

where k ∈ Zd.

Definition 1.1 [CvZ19, Definition 4.4]
We define for F ∈ {R,C},

S(Td2L,F) =C∞(Td2L,F), Sd([0, L]d,F) = {ϕ ∈ C∞([0, L]d,F)|ϕ̃ ∈ S(Td2L,F)},
Sn([0, L]d,F) = {ϕ ∈ C∞([0, L]d,F)|ϕ̄ ∈ S(Td2L,F)},

equipped with the Schwartz seminorms. The continuous dual spaces are denoted by
S′(Td2L,F), S′

d([0, L]d,F) and S′
n([0, L]d,F), and are equipped with the weak*-topologies.

Theorem 1.2 [CvZ19, Theorem 4.5]
The following hold:

(i) Every w ∈ S(Td2L,C), ϕ ∈ Sd([0, L]d,C) and ψ ∈ Sn([0, L]d,C) can be represented
as

w =
∑
k∈Zd

akek, ϕ =
∑
k∈Nd

bkdk, ψ =
∑
k∈Nd

0

cknk, (1)

with (ak)k∈Zd, (bk)k∈Nd and (ck)k∈Nd
0

complex-valued sequences. Further for any
n ∈ N,

sup
k∈Zd

(1 + |k|)n|ak| <∞, sup
k∈Nd

(1 + |k|)n|bk| <∞, sup
k∈Nd

0

(1 + |k|)n|ck| <∞. (2)

8



1.2 Paracontrolled Calculus with Boundary Conditions

What is more, ak = ⟨w, ek⟩L2([−L,L]d,C), bk = ⟨ϕ, dk⟩L2([0,L]d,C) and as well ck =
⟨ψ, nk⟩L2([0,L]d,C). Conversely, if there are sequences (ak)k∈Zd , (bk)k∈Nd and (ck)k∈Nd

0
that satisfy (2) respectively, then the expressions in (1) converge in the respective
spaces.

(ii) Every w ∈ S′(Td2L,C), ϕ ∈ S′
d([0, L]d,C) and ψ ∈ S′

n([0, L]d,C) can be represented
as

w =
∑
k∈Zd

akek, ϕ =
∑
k∈Nd

bkdk, ψ =
∑
k∈Nd

0

cknk, (3)

with (ak)k∈Zd, (bk)k∈Nd and (ck)k∈Nd
0

complex-valued sequences. Further for some
n ∈ N,

sup
k∈Zd

(1 + |k|)−n|ak| <∞, sup
k∈Nd

(1 + |k|)−n|bk| <∞, sup
k∈Nd

0

(1 + |k|)−n|ck| <∞.

(4)

What is more, ak = ⟨w, ek⟩, bk = ⟨ϕ, dk⟩ and as well ck = ⟨ψ, nk⟩. Conversely,
if there are sequences (ak)k∈Zd , (bk)k∈Nd and (ck)k∈Nd

0
that satisfy (4) respectively,

then the expressions in (3) converge in the respective spaces.

Remark 1.3
We see that (dk)k∈Nd and (nk)k∈Nd

0
take the roles of the Fourier base (ek)k∈Zd for func-

tions with Dirichlet- or Neumann boundary conditions, or respectively for odd or even
functions.

Note that w ∈ S(Td2L,C) is odd if and only if ⟨w, eq◦k⟩ = (∏ q) ⟨w, ek⟩ for any k ∈ Zd
and q ∈ {−1, 1}d. This motivates the following:

Definition 1.4 [CvZ19, Definition 4.6]
For u ∈ S′

d([0, L]d) we define ũ ∈ S′(Td2L) given by ũ = ∑
k∈N ⟨u, dk⟩ d̃k. For v ∈

S′
n([0, L]d) we define v̄ ∈ S′(Td2L) given by v̄ = ∑

k∈N ⟨v, nk⟩ n̄k. A distribution w ∈
S′(Td2L) is called odd, if ⟨w, eq◦k⟩ = (∏ q) ⟨w, ek⟩ for any k ∈ Zd and q ∈ {−1, 1}d.
Similarly, w is called even, if ⟨w, eq◦k⟩ = ⟨w, ek⟩ for any k ∈ Zd and q ∈ {−1, 1}d.

We have by partial integration, FTd
2L

(∂αw)(k) = (kπi/L)αFTd
2L

(w)(k) for any α ∈ Nd0.
This motivates the following:

Definition 1.5 [CvZ19, Definition 4.8]
Let ε > 0, τ : Rd → R, σ : [0,∞)d → R, w ∈ S′(Td2L,C), u ∈ S′

d([0, L]d,C) and

9



1.2 Paracontrolled Calculus with Boundary Conditions

v ∈ S′
n([0, L]d,C). We define formally the Fourier multipliers

τ(εD)w =
∑
k∈Zd

τ(εk/L) ⟨w, ek⟩ ek, σ(εD)u =
∑
k∈Nd

σ(εk/L) ⟨u, dk⟩ dk,

σ(εD)v =
∑
k∈Nd

0

σ(εk/L) ⟨v, nk⟩ nk.

The terminology ’formally’ refers to the requirement to verify the respective condition in
(4) for each case.

It holds by [CvZ19, (30)], that for any u ∈ S′
d([0, L]d,C) and v ∈ S′

n([0, L]d,C),

σ̃(D)u = σ̄(D)ũ, σ(D)v = σ̄(D)v̄. (5)

Let (χ, ρ) be a dyadic partition of unity, i.e. let χ, ρ be non-negative, radially symmetric,
smooth functions on Rd such that: χ is supported in a ball and ρ is supported in an
annulus. Further, if we set ρ−1 := χ and ρj := ρ(2−j ·) for j ≥ 0, then for any y ∈ Rd,
j, k ≥ −1, we suppose∑

j≥−1
ρj(y) = 1, 1

2 ≤
∑
j≥−1

ρj(y)2 ≤ 1, |j − k| ≥ 2⇒ supp(ρj) ∩ supp(ρk) = ∅.

Such functions exist by [BCD11, Proposition 2.10]. For j ≥ −1, we define the Littlewood-
Paley blocks given by the Fourier multipliers ∆j := ρj(D) acting respectively on func-
tions of the different spaces considered in Definition 1.5.
To give some context here, let us add that the Littlewood-Paley blocks act precisely as
a decomposition into functions with localized support in Fourier space. It is well known
that certain decays in Fourier space correspond to regularity. In particular, we have
already seen above that regularity is crucial for our analysis. Therefore it is natural
to use Littlewood-Paley blocks as a means of consistently quantifying the regularity of
objects. This is the idea of the following definition of Besov spaces. Since we need
to re-develop central ideas of classical Besov space theory in the presence of boundary
conditions, we introduce all notions simultaneously.

Definition 1.6 [CvZ19, Definition 4.9]
Let ad,p := 2−d/p if p < ∞ and ad,∞ := 1. Let α ∈ R, p, q ∈ [1,∞]. We define the
periodic Besov spaces by

Bα
p,q(Td2L) = {u ∈ S′(Td2L,R)|∥u∥Bα

p,q(Td
2L) := ∥(2jα∥∆ju∥Lp([−L,L]d,C))j≥−1∥lq <∞}.

Further, we define the Dirichlet Besov spaces by

Bd,α
p,q ([0, L]d) = {u ∈ S′

d([0, L]d,R)|∥u∥Bd,α
p,q ([0,L]d) := ad,p∥ũ∥Bα

p,q(Td
2L) <∞}.

Finally, we define the Neumann Besov spaces by

Bn,α
p,q ([0, L]d) = {u ∈ S′

n([0, L]d,R)|∥u∥Bn,α
p,q ([0,L]d) := ad,p∥ū∥Bα

p,q(Td
2L) <∞}.
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1.2 Paracontrolled Calculus with Boundary Conditions

Each of them is equipped with the norm appearing in the corresponding definition. We
may write Bα

p,q, Bd,α
p,q , Bn,α

p,q and the other cases analogously if there is no ambiguity.

Theorem 1.7 [CvZ19, below Definition 4.9]
The Besov-, Dirichlet Besov- and Neumann Besov- spaces are all Banach spaces with
corresponding norms. Also, the resulting spaces are independent of the chosen dyadic
partition of unity.

Proof
The assertion for the Besov space on Rd is given in [BCD11, Theorem 2.72] and carries
over to the periodic setting due to the extendability of distributions on the torus to
periodic distributions on the full space. This subsequently carries over to the other
spaces by the definition via odd or even extensions. For the independence of (χ, ρ), see
[BCD11, Corollarly 2.70].

□

Definition 1.8 [CvZ19, below Definition 4.9]
Let α ∈ R. We write Cα := Bα

∞,∞(Td2L), Cαn := Bn,α
∞,∞([0, L]d), Cαd := Bd,α

∞,∞([0, L]d) and
Hα

0 := Bd,α
2,2 ([0, L]d).

To see the intuition behind the notation of Definition 1.8, we need the following:

Theorem 1.9 [CvZ19, Theorem 4.15]
Let α ∈ R. We have for any function f ,

∥f∥Hα
0
≃
√√√√∑
k∈Nd

0

(
1 + |k/L|2

)α
⟨f, dk⟩2.

The above implies that H0
0 = L2([0, L]d), since (dk)k∈Nd

0
forms an orthonormal basis in

L2([0, L]d,R), [CvZ19, Lemma 4.3]. In particular, Hα
0 , α > 0, coincides with the classical

Sobolev spaces with Dirichlet boundary conditions, see [CvZ19, Theorem 4.16].

Theorem 1.10 [CvZ19, Theorem 4.7 (c)]
We have

S̃′
d(Td2L,R) := {ũ|u ∈ S′

d([0, L]d,R)} = {w ∈ S′(Td2L,R)|w is odd},
S̄′
n(Td2L,R) := {ū|u ∈ S′

n([0, L]d,R)} = {w ∈ S′(Td2L,R)|w is even}.

Both spaces are closed in S′(Td2L,R). The spaces S′(Td2L,R), S′
d([0, L]d), S′

n([0, L]d) are
weak*-sequentially complete.

In the absence of boundary conditions, Bα
∞,∞ coincides with the Hölder spaces Cα if α ∈

R+ \N0. By combining this with Theorem 1.10, we see that Definition 1.8 captures that

11



1.2 Paracontrolled Calculus with Boundary Conditions

Cαd and Cαn are the spaces of Hölder-continuous functions with Dirichlet- or respectively
Neumann boundary conditions.
The Hölder-Besov norm can also be used to control the L∞-norm of functions:

Lemma 1.11
It holds that for any ε > 0, ∥u∥L∞ ≲ ∥u∥Cε

d
if u ∈ Cεd and ∥u∥L∞ ≲ ∥u∥Cε

n
if u ∈ Cεn.

Proof
As stated in [GIP15, Appendix A] it holds that ∥ũ∥L∞(Td

2L) ≲ ∥ũ∥Cε for any ε > 0
and u ∈ Cεd . Consequently, ∥u∥L∞([0,L]2) = ∥ũ∥L∞(Td

2L) ≲ a−1
d,∞∥u∥Cε

d
. The other case is

analogous.
□

Theorem 1.12 [CvZ19, Theorem 4.17]
Let p, q ∈ [1,∞] and α < β ∈ R. Then, Bβ

p,q is compactly embedded in Bα
p,q, Bn,β

p,q is
compactly embedded in Bn,α

p,q and Bd,β
p,q is compactly embedded in Bd,α

p,q .

Theorem 1.13 [CvZ19, Theorem 4.19]
Let γ ∈ R and m ≥ 0. Let σ : Rd → R be such that |σ(x)| ≲ (1 + |x|)−m for any x ∈ Rd.
Then

∥σ(D)w∥
Hγ+m

0
≲ ∥w∥Hγ

0
.

Let γ,m ∈ R. Let σ : Rd → R be such that σ ∈ C∞(Rd \ {0}). Assume that for any
α ∈ Nd0 with |α| ≤ 2⌊1+d/2⌋ there exists some Cα > 0 such that |∂ασ(x)| ≤ Cα|x|−m−|α|

for any x ̸= 0. Then

∥σ(D)w∥Cγ+m
n ([0,L]d) ≲ ∥w∥Cγ

n ([0,L]d).

Remark 1.14
Let σ(x) := (1 + π2|x|2)−1. Then formally σ(D) = (1 −∆)−1 and indeed σ satisfies all
of the assumptions of Theorem 1.13 with m = 2, see [CvZ19, 4.11 and 4.20].

A fundamental result by Schwartz states that there is no canonical way of defining
a product of distributions. However, Bony realised that it is possible to define such
products if the regularities add up to a positive constant. To make this precise we need
to introduce paraproducts and resonant products between distributions.

12



1.2 Paracontrolled Calculus with Boundary Conditions

Definition 1.15 [CvZ19, Definition 4.23]
Let u ∈ S′

d([0, L]d) ∪ S′
n([0, L]d) and v ∈ S′

n([0, L]d). We write formally

u4 v =
∑

i,j≥−1
i≤j−2

∆iu∆jv, u� v =
∑

i,j≥−1
|i−j|≤1

∆iu∆jv

and call 4 the paraproduct and � the resonant product. This yields the decomposition
uv := u 4 v + v 4 u + u � v. The terminology ’formally’ refers to the requirement to
verify the assumptions of Theorem 1.16 below.

It turns out that paraproducts are always defined irrespectively of the regularities in-
volved, while the resonant product needs regularity assumptions. Before we proceed, we
need to make one more important observation: not all boundary conditions are com-
patible. Recall that the Besov spaces with boundary conditions were defined in terms
of odd and even extensions. Let u, v be some functions and uv be their usual product.
Then it is clear that uv = ūv̄ = ũṽ and ũv = ũv̄ = ūṽ. Keeping this in mind, we can
formulate the Bony estimates.

Theorem 1.16 (Bony’s estimates I)
Let α, β ∈ R. Then it holds that:

(i) If α < 0, then ∥ξ 4 u∥Cα+β
d

≲α,β ∥ξ∥Cα
n
∥u∥Cβ

d
.

(ii) It holds that for u ∈ S′
d([0, L]2), ∥u4 ξ∥Cα

d
≲α ∥u∥L∞∥ξ∥Cα

n
.

(iii) If α+ β > 0, then ∥u� ξ∥Cα+β
d

≲α,β ∥ξ∥Cα
n
∥u∥Cβ

d
.

Proof
It holds that ξ̃ 4 u = ξ̄ 4 ũ, ũ4 ξ = ũ 4 ξ̄ and ũ� ξ = ũ � ξ̄. The claims now follow
from the definitions of the Dirichlet- and Neumann Besov spaces together with [GIP15,
Lemma 2.1].

□

Theorem 1.17
Let α ∈ (0, 1), β, γ ∈ R such that β + γ < 0 and α + β + γ > 0. Then the trilinear
operator R(f, g, h) := (f4g)�h−f(g�h), f ∈ Sd([0, L]2,R), g, h ∈ Sn([0, L]2,R) can be
continuously extended to Cαd ×C

β
n ×Cγn such that ∥R(f, g, h)∥Cα+β+γ

d
≲ ∥f∥Cα

d
∥g∥Cβ

n
∥h∥Cγ

n
.

Proof
The version on the torus with commutator denoted by C can be found in [GIP15, Lemma
2.4]. We define for f ∈ Sd([0, L]2,R) and g, h ∈ Sn([0, L]2,R), ˜R(f, g, h) := C(f̃ , ḡ, h̄).
The claimed properties then follow for f, g, h smooth by [GIP15, Lemma 2.4].
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1.2 Paracontrolled Calculus with Boundary Conditions

To extend the above to Cαd × C
β
n × Cγn , we need to make sure that R is still well-defined

beyond the smooth case.
We claim that for f ∈ Cδd , g ∈ Cδn , δ ∈ R, there exist (fk)k∈N, fk ∈ Sd([0, L]2,R), and
(gk)k∈N, gk ∈ Sn([0, L]2,R) such that fk → f in Cδ′

d and gk → g in Cδ′
n for any δ′ < δ.

Proof of the claim: Let (PDir
t )t≥0, (PNeu

t )t≥0 denote the semigroups generated by the
Dirichlet-, respectively Neumann Laplacians on [0, L]2. We will see in Lemma 1.36, that
for any t ∈ (0, 1], ∥PDir

t f∥Cδ
d
≲ ∥f∥Cδ

d
and ∥PNeu

t g∥Cδ
n
≲ ∥g∥Cδ

n
. We define fk := PDir

1/kf

and gk := PNeu
1/k g, which are smooth by Lemma 1.36. By Theorem 1.12, we can extract

subsequences that converge in Cδ′
d , and respectively in Cδ′

n . Denote limk→∞ fk = f ′ ∈ Cδ′
d

and let φ ∈ Sd([0, L]2). It follows that

⟨PDir
1/kf, φ⟩ =

∑
k∈Nd

exp(−(π/L)2t|k|2) ⟨f, dk⟩ ⟨dk, φ⟩ →
∑
k∈Nd

⟨f, dk⟩ ⟨dk, φ⟩ = ⟨f, φ⟩ .

By using that the embedding Cδ′
d → S′

d is continuous, we get that PDir
1/kf → f ′ in S′

d.
Consequently, ⟨f ′, φ⟩ = ⟨f, φ⟩ and f = f ′ in S′

d. The same holds true for (gk)k∈N as well.
This yields the claim.
We get for (fk)k∈N, (gk)k∈N, (hk)k∈N as above, C(f̃k, ḡk, h̄k) → C(f̃ , ḡ, h̄) in Cα′+β′+γ′

with α′ < α, β′ < β, γ′ < γ such that β′ + γ′ < 0 and α′ + β′ + γ′ > 0. The LHS is
odd by the smoothness of the approximations and consequently, the limit is odd as well.
Hence, we can extend ˜R(f, g, h) := C(f̃ , ḡ, h̄) to f ∈ Cαd , g ∈ Cβn , h ∈ Cγn and the result
follows from [GIP15, Lemma 2.4].

□
If one combines Sobolev and Hölder regularities in the above, this will occasionally incur
a small loss of regularity. This fact will only play a minor role.

Theorem 1.18 (Bony’s estimates II)[CvZ19, Theorem 4.25][AC15, Proposi-
tion 3.1]
Let α, β, δ ∈ R. Then it holds that

(i) If α < 0, then ∥ξ 4 f∥
Hα+β

0
≲α,β ∥ξ∥Cα

n
∥f∥

Hβ
0
.

(ii) If β ≥ 0 and δ > 0, then ∥f 4 ξ∥Hα−δ
0

≲α,β,δ ∥f∥Hβ
0
∥ξ∥Cα

n
.

(iii) If β < 0, then ∥f 4 ξ∥
Hβ+α

0
≲ ∥f∥

Hβ
0
∥ξ∥Cα

n
.

(iv) If α+ β > 0, then ∥f � ξ∥
Hα+β

0
≲α,β ∥f∥Hβ

0
∥ξ∥Cα

n
.

(v) If α < 0, α+ β > 0, δ > 0, then ∥fξ∥Hα−δ
0

≲α,β,δ ∥f∥Hβ
0
∥ξ∥Cα

n
.

Theorem 1.19 [AC15, Proposition 4.3]
Let α ∈ (0, 1), β, γ ∈ R such that β+γ < 0, α+β+γ > 0 and let δ > 0. Then the trilinear
operator R(f, g, h) := (f4g)�h−f(g�h), f ∈ Sd([0, L]2,R), g, h ∈ Sn([0, L]2,R) can be
continuously extended to Hα

0 ×C
β
n×Cγn such that ∥R(f, g, h)∥

Hα+β+γ−δ
0

≲ ∥f∥Hα
0
∥g∥Cβ

n
∥h∥Cγ

n
.
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1.3 Regularity and Convergence of Enhanced Neumann White Noise

1.3 Regularity and Convergence of Enhanced Neumann White Noise

In this section we introduce results concerning the regularity and convergence of en-
hanced white noise with Neumann boundary conditions (Neumann white noise). The
following can be found in [CvZ19, Section 6].

Figure 1: One realisation of mollified white noise with L = 1 and m = 25.

Figure 2: One realisation of mollified white noise with L = 1 and m = 100.

Definition 1.20 [CvZ19, Definition 6.1]
Let (Ω,F ,P) be a complete probability space. A white noise on R2 is a random distri-
bution W : Ω → S′(R2,C) such that for any f ∈ S(R2,C), W (f) is a complex centred
Gaussian random variable with W (f)C = W (fC) and E(W (f)W (g)C) = ⟨f, g⟩L2(R2,C)
for any f, g ∈ S(R2,C).

We can extend W to a bounded linear operator W : L2(R2,C) → L2(Ω,C) such that
for any f ∈ L2(R2,C), W (f) is a complex centred Gaussian random variable with
W (f)C = W (fC) and E(W (f)W (g)C) = ⟨f, g⟩L2(R2,C). We now define the mollified
Neumann white noise. Let τ ∈ C∞

c (R2, [0, 1]) be even such that τ ≡ 1 in a neighbourhood
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1.3 Regularity and Convergence of Enhanced Neumann White Noise

of 0. We define

ξm =
∑
k∈N2

0

τ((mL)−1k)W (nk)nk,

where nk was extended by 0 beyond [0, L]2.

Since we anticipate the requirement to renormalize the continuous Anderson Hamilto-
nian, we aim to define it as the limit of ∆ + ξm − cm, where (ξm)m∈N approximates the
Neumann white noise ξ (in a way to be made precise below) and with (cm)m∈N being a
particular diverging series of constants. This is implicit in the following definition:

Definition 1.21 [CvZ19, Definition 5.1]
We define the space of enhanced Neumann distributions Xαn to be the closure in Cαn ×C2α+2

n

of

{(ζ, ζ � σ(D)ζ − c)|ζ ∈ Sn([0, L]2,R), c ∈ R}.

We equip Xαn with the relative topology in Cαn × C2α+2
n and the norm ∥ξ∥2Xα

n
= ∥ξ∥2Cα

n
+

∥Ξ∥2C2α+2
n

for ξ = (ξ,Ξ) ∈ Xαn .

As it was already mentioned, we need to enhance white noise. The second component of
the elements ξ ∈ Xαn corresponds to this enhancement. The main result of this section
is the convergence and regularity of enhanced white noise:

Theorem 1.22 [CvZ19, Theorem 6.4]
Let α < −1. There exists some random variable ξ ∈ Xαn such that almost surely in Xαn ,

lim
m→∞

(ξm, ξm � ϑm − cm)→ ξ =: (ξ,Ξ),

with cm := 1/(2π) log(m) + cτ , where cτ only depends on τ . For ϕ, ψ ∈ Sn([0, L]2,C),
⟨ξ, ϕ⟩ and ⟨ξ, ψ⟩ are centred Gaussian random variables such that

E(⟨ξ, ϕ⟩ ⟨ξ, ψ⟩C) = ⟨ϕ, ψ⟩L2([0,L]2,C)

and for any ϕ ∈ C∞
c ([0, L]2), ⟨ξ, ϕ⟩ = W (ϕ). The enhancement ξ is independent of τ .

The proof relies on Gaussian hypercontractivity, the Kolmogorov-Čentsov theorem and
a careful analysis of the terms in the Littlewood-Paley decomposition.

Remark 1.23
The renormalizing sequence used here differs from the one stated in [CvZ19, Theorem
6.4] and will appear in an updated version of [CvZ19].
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1.4 Exposition: The Continuous Anderson Hamiltonian on the Square

Let us also show a quantitative bound on the L∞-norm of the mollified white noise as
the mollification vanishes.

Lemma 1.24
It holds that a.s., ∥ξm∥L∞ ≲ m1+ε for any ε > 0.

Proof
It follows by Theorem 1.22 and linearity that (⟨ξ, nk⟩)k∈N2

0
is multivariate normally dis-

tributed, which implies that (ξm)m∈N has the same distribution as

τ(m−1D)ξ =
∑
k∈N2

0

τ((mL)−1k) ⟨ξ, nk⟩ nk.

We get for any ε > 0,

∥τ(m−1D)ξ∥L∞ ≲ ∥τ(m−1D)ξ∥Cε
n

= a2,∞∥τ̄(m−1D)ξ̄∥Cε ,

where we used (5) in the last equality. By a version of the Hörmander-Mihlin inequality,
[BCD11, Lemma 2.2], it follows that ∥τ̄(m−1D)ξ̄∥Cε ≲ m−α+ε∥ξ̄∥Cα . Consequently for
any ε > 0, ∥τ(m−1D)ξ∥L∞ ≲ m−α+ε∥ξ∥Cα

n
. Since α < −1, the claim follows.

□
From here on we treat ξm = (ξm, ξm � ϑm − cm) and ξ realisation-wise and assume the
regularity and convergence of Theorem 1.22.

1.4 Exposition: The Continuous Anderson Hamiltonian on the Square

In this section we define the continuous Anderson Hamiltonian with Dirichlet boundary
conditions and characterize its spectrum. Most of the material can be found in [AC15]
and [CvZ19, Sections 5, 6]. Let us stress that our construction of the killed rough Super
Brownian Motion does not use the theory developed below: The reason is that the con-
tinuous Anderson Hamiltonian does in general not map into spaces of sufficiently high
regularity. Nevertheless, its Eigenfunctions are linked to persistence properties, which
we will consider in Section 4.

Let from here on d = 2, α ∈ (−4/3,−1), γ ∈ (2/3, α + 2), L > 0. We also write
Cαn ([0, L]2) =: Cαn , Hγ

0 ([0, L]2) =: Hγ
0 and L2([0, L]2) =: L2. We define σ : R2 → (0,∞)

by x 7→ σ(x) := (1 + π2|x|2)−1.
We think of ξ as one realisation of Neumann white noise and define the domain of the
continuous Anderson Hamiltonian.

Definition 1.25 [CvZ19, Definition 5.2]
Let ξ := (ξ,Ξ) ∈ Xαn . We define the space of paracontrolled distributions Dd,γ

ξ = {f ∈
Hγ

0 |f ♯ := f − f 4 σ(D)ξ ∈ H2γ
0 }. We define a scalar product on Dd,γ

ξ by ⟨f, g⟩Dd,γ
ξ

=
⟨f, g⟩Hγ

0
+ ⟨f ♯, g♯⟩

H2γ
0

.
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1.4 Exposition: The Continuous Anderson Hamiltonian on the Square

We also define the subspace Dd,γ
ξ of strongly paracontrolled distributions by Dd,γ

ξ = {f ∈
Hγ

0 |f ♭ := f ♯ − B(f, ξ) ∈ H2
0}, where B(f, ξ) = σ(D)(fΞ + ξ 4 f + ∆f 4 σ(D)ξ +

2∑d
i=1 ∂if 4 ∂iσ(D)ξ). We define a scalar product on Dd,γ

ξ by ⟨f, g⟩Dd,γ
ξ

= ⟨f, g⟩Hγ
0

+
⟨f ♭, g♭⟩H2

0
.

These definitions are partly motivated by Lemma 1.27 and Lemma 1.28 below. By
modelling the theory around Eigenfunctions, one can guess the right paracontrolled
structure by counting regularities. The details can be found in [AC15, above Definition
4.1, and Section 4.2].
Of course, f ♯ and f ♭ depend on ξ and ξ respectively. That means that each enhanced
Neumann distribution ξ yields a space of (strongly) paracontrolled distributions. We can
now define the (Dirichlet) continuous Anderson Hamiltonian acting on such functions:

Definition 1.26 [CvZ19, Definition 5.3]
Let ξ = (ξ,Ξ) ∈ Xαn . We define formally the operator Hξ : Dd,γ

ξ → Hγ−2
0 by

Hξf = ∆f + ξ 4 f + f 4 ξ + f ♯ � ξ + fΞ + R(f, σ(D)ξ, ξ),

where R is the operator of Theorem 1.17. The terminology ’formally’ refers to the
requirement to verify that the operator does indeed map into Hγ−2

0 .

The next lemma removes the formal aspect of the previous definition and gives some
first bounds.

Lemma 1.27
Let ξ = (ξ,Ξ) ∈ Xαn . Then it holds that ∥Hξf∥Hγ−2

0
≲ ∥f∥Dd,γ

ξ
(1 + ∥ξ∥Xα

n
)2.

Proof
Let ξ ∈ Xαn and f ∈ Dd,γ

ξ . We have

Hξf = ∆f + ξ 4 f + f 4 ξ + f ♯ � ξ + fΞ + R(f, σ(D)ξ, ξ).

Therefore by Bernstein’s inequalities, Theorem 1.18, Theorem 1.13 and Theorem 1.19,

∥∆f∥
Hγ−2

0
≲ ∥f∥Hγ

0
, ∥ξ 4 f∥

Hγ−2
0

≲ ∥f∥Hγ
0
∥ξ∥Cα

n
,

∥f 4 ξ∥
Hγ−2

0
≲ ∥f∥Hγ

0
∥ξ∥Cα

n
, ∥f ♯ � ξ∥

Hγ−2
0

≲ ∥f ♯∥
H2γ

0
∥ξ∥Cα

n
,

∥R(f, σ(D)ξ, ξ)∥
Hγ−2

0
≲ ∥f∥Hγ

0
∥ξ∥2Cα

n
, ∥fΞ∥

Hγ−2
0

≲ ∥f∥Hγ
0
∥Ξ∥C2α+2

n
,

using that γ − 2 < α, γ − 2 < 2γ + α, γ − 2 < γ + 2α+ 2 and γ − 2 < 2α+ 2.
□

Lemma 1.28 [AC15, Proposition 4.20]
Let ξ = (ξ,Ξ) ∈ Xαn . If f ∈ Dd,γ

ξ , then Hξf ∈ L2.
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1.5 The Mollified Dirichlet Parabolic Anderson Model

Proof
If f ∈ Dd,γ

ξ , then it holds that f = f 4σ(D)ξ+B(f, ξ)+f ♭. So with ∆f = f − (1−∆)f ,

Hξf = ∆f + f 4 ξ + ξ 4 f + f ♯ � ξ + R(f, σ(D)ξ, ξ) + fΞ
= f − (−∆)f 4 σ(D)ξ − f 4 (1−∆)σ(D)ξ + 2∇f 4∇σ(D)ξ
− (1−∆)B(f, ξ)− (1−∆)f ♭ + f 4 ξ + ξ 4 f + f ♯ � ξ + R(f, σ(D)ξ, ξ) + fΞ
= f − (1−∆)f ♭ + f ♯ � ξ + R(f, σ(D)ξ, ξ),

where in the last line we used the definition of B(f, ξ). We get for δ > 0, f ∈ Hγ
0 ,

f ♭ ∈ H2
0 , ∆f ♭ ∈ L2, f ♯ � ξ ∈ H2γ+α

0 , R(f, σ(D)ξ, ξ) ∈ Hγ+2α+2−δ
0 . For δ sufficiently

small we get indeed the regularity L2 using that 2γ + α > 0 and γ + 2α+ 2 > 0.
□

The next theorem concerns the spectrum of the continuous Anderson Hamiltonian.

Theorem 1.29 [CvZ19, Theorem 5.4]
Let ξ ∈ Xαn . Then it holds that Hξ(Dd

ξ) ⊂ L2 and Hξ : Dd,γ
ξ → L2 is closed and

self-adjoint as an operator on L2. There exist λ1(ξ) ≥ λ2(ξ) ≥ λ3(ξ) ≥ ... such that
the spectrum equals the point spectrum via S (Hξ) = Sp(Hξ) = {λn(ξ)|n ∈ N} and
Card{n ∈ N|λn(ξ) = λ} = Dim Ker(λ − Hξ) < ∞ for any λ ∈ S (Hξ). One has
L2 = Span({uk(ξ)|k ∈ N}) with (uk(ξ))k∈N being the associated orthonormal system of
Eigenfunctions of Hξ. What is more, there exists some N > 0 such that for any n ∈ N
and ξ,θ ∈ Xαn , |λn(ξ)− λn(θ)| ≲ ∥ξ − θ∥Xα

n
(1 + ∥ξ∥Xα

n
+ ∥θ∥Xα

n
)N .

Finally we state the result that the largest Eigenvalue of Hξ will become positive almost
surely as the size of the square increases. Along with the continuity of the Eigenvalues
in Theorem 1.29, this will play a crucial role in Section 4.

Theorem 1.30 [CvZ19, Theorem 2.8]
Denote by λ1(ξ, L) the largest Eigenvalue of Hξ on [0, L]2. Then there exists some ρ1 > 0
such that almost surely,

lim
L→∞,L=2n,n∈N

λ1(ξ, L)
log(L) = 2

ρ1
.

Note that for any m ∈ N, Dd,γ
ξm

= H2
0 and Hξm = ∆+ξm−cm may be expressed as above,

see [CvZ19, 5.9]. We will often use the notation Hξm := ∆ + ξm − cm. In particular,
since ξm → ξ in Xαn , we get the continuity of the Eigenvalues of Hξm to Hξ.

1.5 The Mollified Dirichlet Parabolic Anderson Model

In this section we begin the derivation of the solution theory for the Dirichlet Parabolic
Anderson Model (PAM) by considering the mollified case. We follow the approach of
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[GIP15, Section 5] with the differences that we consider the linear (non-generalized)
model, include Dirichlet boundary conditions and use a slightly different enhancement
of white noise. Let from here on ξm be a mollified Neumann white noise as constructed
in Section 1.3.

First we introduce some parabolic Hölder spaces which are appropriate for our solution
theory.

Definition 1.31 [GP17, Section 2.1]
Let β ∈ (0, 2). We define the space L β

d,T := CTCβd ∩ C
β/2
T L∞ equipped with the norm

∥u∥
L β

d,T
:= max{∥u∥

CT Cβ
d
, ∥u∥

C
β/2
T L∞}.

One of the most important properties of this space is given by the following:

Lemma 1.32 [GP17, Lemma 2.11]
Let β ∈ (0, 2), T > 0 and let f ∈ L β

d,T . Then for any δ ∈ (0, β], we have

∥f∥L δ
d,T

≲ ∥f(0)∥Cδ
d

+ T (β−δ)/2∥f∥
L β

d,T
.

Proof
The assertion for the periodic case can be found in [GP17, Lemma 2.11] and the ex-
tension to the case with Dirichlet boundary conditions follows by the definition via odd
extensions.

□
The parabolic Hölder spaces also inherit the compact embedding properties from the
non-parabolic ones.

Lemma 1.33
Let 0 < β′ < β < 2 be non-integer and T > 0. Then it holds that L β

d,T is compactly
embedded in L β′

d,T .

Proof
Let (un)n∈N be bounded in L β

d,T . It follows by the Arzelà-Ascoli theorem, that there
exists some u, such that for a subsequence, unk

→ u as k → ∞ in CTL
∞. For this u,

uniformly in s ̸= t ∈ [0, T ],

∥u(t)− u(s)∥L∞ ≤ lim
k→∞
∥unk

(t)− unk
(s)∥L∞ ≤ C|t− s|β/2,

and uniformly in t ∈ [0, T ], for x ̸= y ∈ (0, L)2,

|u(t, x)− u(t, y)| ≤ lim
k→∞
|unk

(t, x)− unk
(t, y)| ≤ C|x− y|β
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for some constant C > 0. Therefore
∥(u− unk

)(t)− (u− unk
)(s)∥L∞

|t− s|β′/2

=
(
∥(u− unk

)(t)− (u− unk
)(s)∥L∞

|t− s|β/2 ∥(u− unk
)(t)− (u− unk

)(s)∥
β
β′ −1
L∞

)β′
β

.

The first factor is bounded uniformly in s ̸= t and the second vanishes. Similarly,
|(u− unk

)(t, x)− (u− unk
)(t, y)|

|x− y|β′

=
(
|(u− unk

)(t, x)− (u− unk
)(t, y)|

|x− y|β
|(u− unk

)(t, x)− (u− unk
)(t, y)|

β
β′ −1

)β′
β

.

Again, the first factor is bounded uniformly in t ∈ [0, T ] and x ̸= y ∈ (0, L)2 and the
second vanishes. This yields that unk

→ u in L β′

d,T , which is the claim.
□

We will also need to consider some explosive counterparts.

Definition 1.34 [GP17, Section 6]
Let γ ≥ 0 and β ∈ (0, 2). We define Mγ

TC
β
d := {v : [0, T ] → S′

d([0, L]2)|∥v∥
Mγ

T Cβ
d
< ∞},

where

∥v∥
Mγ

T Cβ
d

= sup
t∈[0,T ]

(
tγ∥v(t)∥Cβ

d

)
.

We define the space L γ,β
d,T := {f : [0, T ]→ S′

d([0, L]2)|∥f∥
L γ,β

d,T
<∞}, where

∥f∥
L γ,β

d,T
:= max{∥t 7→ tγf(t)∥

C
β/2
T L∞ , ∥f∥Mγ

T Cβ
d
}.

Again, those spaces come with an important relation, which will allow us to obtain small
scaling coefficients:

Lemma 1.35 [GP17, Lemma 6.8]
Let β ∈ (0, 2), γ ∈ (0, 1), T > 0 and let f ∈ L γ,β

d,T . Then for any ε ∈ [0, β ∧ 2γ],

∥f∥
L

γ−ε/2,β−ε
d,T

≲ ∥f∥
L γ,β

d,T
.

Proof
The assertion for the periodic case can be found in [GP17, Lemma 6.8]. The claim with
Dirichlet boundary conditions follows by the definition.

□
We will use the following results to establish that certain functions lie in Ld,T :
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Lemma 1.36 [GIP15, Lemma A.7]
Let (Pt)t≥0 be the semigroup generated by the Dirichlet Laplacian on [0, L]2. Then for
any T > 0, α ∈ R, δ ≥ 0 and u ∈ S′

d([0, L]2), uniformly in t ∈ (0, T ],

∥Ptu∥Cα+δ
d

≲T t
−δ/2∥u∥Cα

d
and ∥Ptu∥Cδ

d
≲T t

−δ/2∥u∥L∞ .

Proof
Let us momentarily denote by (PDir

t )t≥0 the semigroup for the Dirichlet Laplacian and
by (P per

t )t≥0 the semigroup for the periodic Laplacian. The Dirichlet semigroup is given
by the formula

P̃Dir
t u = ˜τ(

√
tD)u = τ(

√
tD)ũ = P per

t ũ,

with τ(x) = exp(−π2|x|2), where we have used (5). Indeed, if u is a proper function,
then we can first start the heat equation on the torus from ũ, note that the solution
retains its odd symmetry and then restrict to [0, L]2. We get

∥PDir
t u∥Cα+δ

d
= a2,∞∥P̃Dir

t u∥Cα+δ = a2,∞∥P per
t ũ∥Cα+δ .

The claim now follows from [GIP15, Lemma A.7].
□

Remark 1.37
Let (PNeu

t )t≥0 be the semigroup for the Neumann Laplacian. Then Lemma 1.36 carries
over with the same line of arguments.

Lemma 1.38 [GIP15, Lemma A.8]
Let (Pt)t≥0 be the semigroup for the Dirichlet Laplacian on [0, L]2. Let β ∈ (0, 1) and
u ∈ Cβd . Then we have for all t ≥ 0,

∥(Pt − 1)u∥L∞ ≲ tβ/2∥u∥Cβ
d
.

Proof
The proof follows by [GIP15, Lemma A.8] and the reasoning of the proof of Lemma 1.36.

□
A generalization of Lemma 1.38 to different exponents is given by the following Schauder
estimates:

Lemma 1.39 [GP17, Lemma 2.9]
Let (Pt)t≥0 be the semigroup for the Dirichlet Laplacian on [0, L]2. We define for f ∈
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C([0,∞), S′
d([0, L]2)), If(t) :=

∫ t
0 Pt−sf(s)ds. Let β ∈ (0, 2), then for any T > 0,

∥If∥
L β

d,T
≲ ∥f∥

CT Cβ−2
d

and ∥Pu0∥L β
d,T

≲ ∥u0∥Cβ
d
.

Finally we also need the following analogue for the explosive spaces:

Lemma 1.40 [GP17, Lemma 6.6]
Let β ∈ (0, 2), T > 0 and γ ∈ [0, 1). Then

∥If∥
L γ,β

d,T
≲ ∥f∥

Mγ
T Cβ−2

d
and if δ ≥ −β, then ∥Pu0∥L (β+δ)/2,β

d,T

≲ ∥u0∥C−δ
d
.

For any β ∈ R, γ ∈ [0, 1) and T > 0,

∥If∥
Mγ

T Cβ
d
≲ ∥f∥

Mγ
T Cβ−2

d
.

Now for the solution theory of the PAM, we first consider a sequence of mollified white
noises (ξm)m∈N which we assume converge to ξ in Xα+4ε

n , with ε ∈ (0, 1/4(−1 − α)).1
From here on, we denote L = ∂t−∆ and recall that Hξm = ∆ + ξm− cm. We first show
that several notions of solutions to the mollified PAM found in the literature are in fact
compatible.

Theorem 1.41
Let m ∈ N, um0 ∈ Cα+2

d and T > 0. Then there exists a unique, uniformly continuous
solution um ∈ L α+2

d,T ∩C1,2((0, T )×(0, L)2) to the mollified Dirichlet Parabolic Anderson
Model given by {

Lum = (ξm − cm)um in (0, T )× (0, L)2,

um(0) = um0 in [0, L]2, um = 0 on [0, T ]× ∂[0, L]2.

We define

Dom(Hξm) := {f |f ∈ C0((0, L)2),Hξmf ∈ C0((0, L)2)}.

There exists a semigroup associated to Hξm and if um0 ∈ Dom(Hξm), then there exists
a unique mild and also strong solution um ∈ C1([0,∞), C0((0, L)2)) in this sense. The
solution satisfies for any 0 ≤ t < ∞, um(t) ∈ Dom(Hξm). We call those notions
of solutions of Lieberman- or respectively semigroup-sense with respect to Hξm. Both
notions of solutions are consistent with one another.

1The reason why we need the noise to lie in a slightly better space will become clear below. Since
the regularity α < −1 of white noise is not sharp, we may assume that it actually lies in this space.

23



1.5 The Mollified Dirichlet Parabolic Anderson Model

Proof
The first claim follows from [Lie89, Theorem 13.3] after noting that (0, T ) × (0, L)2

satisfies a uniform exterior tusk condition on its parabolic boundary. Also, following the
observations below [Lie89, Theorem 13.3], using that the ’width’ R0 of the tusk may
be chosen arbitrarily large, we may assume σ0 = 1; all of the above in the notation of
[Lie89, Theorem 13.1]. Therefore we may choose, again in this notation, σ = α + 2,
which yields the claim.
For the second claim assume that um0 ∈ Dom(Hξm). Note that by [CZ95, Theorem 3.17,
Proposition 3.23 and above], there exists a strongly continuous semigroup on C0((0, L)2)
associated to Hξm , which yields a mild and also strong solution in Dom(Hξm).
Let vm be a solution of semigroup-sense started from um0 ∈ Dom(Hξm) ∩ Cα+2

d . We
will see below that vm = Pum0 + I((ξm − cm)vm). By Lemma 1.39, ∥Pum0 ∥L α+2

d,T
≲

∥um0 ∥Cα+2
d

. Next by Lemma 1.40, ∥I((ξm − cm)vm)∥CT Cα+2
d

≲ ∥(ξm − cm)vm∥CT Cα
d

≲

∥(ξm − cm)vm∥CTL∞ . Therefore, vm ∈ CTCα+2
d . We iterate again and arrive at the

bound ∥I((ξm − cm)vm)∥CT Cα+4
d

≲ ∥(ξm − cm)vm∥CT Cα+2
d

. By Lemma 1.36 for any t > 0,
Ptu

m
0 ∈ C2((0, L)2). This yields for any t > 0, vm(t) ∈ C2((0, L)2), since α+ 4 > 2.

Let now u be a solution of Lieberman-sense. In order to establish that u = v, it suffices to
apply the maximum principle [Eva10, Theorem 7.1.4.9] to w(t) := exp(−At)(u(t)−v(t)),
where A := supx∈(0,L)2 |ξm(x)− cm|.

□

Definition 1.42
Note that Dom(Hξm) is independent of m and coincides with the domain of the Dirichlet
Laplacian on (0, L)2. In particular,

Dom(Hξm) = {f |f ∈ C0((0, L)2),∆f ∈ C0((0, L)2)}.

We define Im
PAM := Dom(Hξm) ∩ Cα+2

d .

We finally need to define a modified paraproduct to include some smoothing in time.
This will allow us to let it commute with L modulo more regular terms.

Definition 1.43 [GIP15, Section 5][GP17, Section 2.3]
Let ϕ ∈ C∞

c (R) be non-negative, of total mass 1, and assume that Supp(ϕ) ⊂ (0,∞). We
define for any i ≥ −1, Qi : CTS′

d([0, L]2) → CTS
′
d([0, L]2) by Qif(t) =

∫
R 22iϕ(22i(t −

s))f((s ∧ T ) ∨ 0)ds. We define a modified paraproduct by

f 4T g =
∑
i≥−1

i−2∑
j=−1

∆jQif∆ig, f ∈ CTS′
d([0, L]2), g ∈ CTS′

n([0, L]2).

Note that if g is independent of time, then it follows that (f 4T g)(0) = f(0) 4 g,
since Supp(ϕ) ⊂ (0,∞) and ϕ is of mass 1. Some crucial properties of the modified
paraproduct are summarized in the following:
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Lemma 1.44 [GIP15, Lemma 5.1 and above]
Let T > 0, δ ∈ (0, 1), β ∈ R. Let f ∈ CTS′

d([0, L]2) and g : [0, T ] → Cβn . Then it holds
that

∥(f 4T g)(t)∥Cβ
d
≲ ∥f∥CTL∞∥g(t)∥Cβ

n
.

Let u ∈ L δ
d,T and v ∈ CTCβn . Then

∥L(u4T v)− u4T Lv∥CT Cδ+β−2
d

≲ ∥u∥L δ
d,T
∥v∥

CT Cβ
n

as well as

∥u4 v − u4T v∥CT Cδ+β
d

≲ ∥u∥
C

δ/2
T L∞∥v∥CT Cβ

n
.

Proof
By expressing ∆ as a Fourier multiplier and using (5), we get for any u ∈ S′

d([0, L]2),
∆̃u = ∆ũ. Therefore the results follow from [GIP15, Lemma 5.1 and above] using the
definition of Cd and Cn, as the mollification in time will not affect symmetries in space.

□
Those are all the theoretical results we need. Now we can focus on the construction of
the Dirichlet Parabolic Anderson Model.
The goal is to first establish natural bounds for the solutions associated to the mollified
noises and then to establish the local Lipschitz continuity of the solution map.
By parabolic regularity we expect the appropriate space for the solution to the Parabolic
Anderson Model to be L α+2

d,T . Let ϑm = (1 − ∆)−1ξm. Recall that α ∈ (−4/3,−1).
In order to decompose the ill-defined product uξ, we make the paracontrolled Ansatz
u = u 4T ϑ + u♯, with u♯ ∈ C2(α+2)

d . Then u♯ξ is well-defined by Theorem 1.16, since
2α+ 4 + α > 0. Using the equation for u, we can deduce that the remainder u♯ is given
as a solution to a PDE as well:

Lemma 1.45
Let um0 ∈ Im

PAM, m ∈ N. Then um solves the PDE{
Lum = (ξm − cm)um in (0, T )× (0, L)2,

um(0) = um0 in [0, L]2, um = 0 on [0, T ]× ∂[0, L]2,

if and only if um = um 4T ϑm + u♯m and u♯m solves{
Lu♯m = Φ♯

m in (0, T )× (0, L)2,

u♯m(0) = um0 − um0 4 ϑm in [0, L]2, u♯m = 0 on [0, T ]× ∂[0, L]2.
(6)
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The function Φ♯
m is given by

Φ♯
m = (um 4T Lϑm − L(um 4T ϑm)) + (um 4 ξm − um 4 Lϑm)

+ (um 4 Lϑm − um 4T Lϑm) + ξm 4 um + R(um, ξm, ϑm) + um(ξm � ϑm − cm)
+ u♯m � ξm + (um 4T ϑm − um 4 ϑm) � ξm.

Note that um is a solution in both strong senses discussed in Lemma 1.41. First, we
want to establish that um can also be seen as a mild solution of semigroup sense with
respect to ∆. We fix um to be the strong solution to the mollified PAM and consider
the equation for vm,{

Lvm = (ξm − cm)um in (0, T )× (0, L)2,

vm(0) = um0 in [0, L]2, vm = 0 on [0, T ]× ∂[0, L]2.

The function um ∈ C([0, T ], C0((0, L)2)) ∩C1((0, T ), C0((0, L)2)) is a pointwise solution
to this equation such that um ∈ Dom(Hξm). Consequently, it is a strong solution in the
semigroup sense with respect to ∆, hence also a mild solution.
We have u♯m ∈ C0((0, L)2), since um ∈ C0((0, L)2) and um 4T ϑm ∈ C0((0, L)2). Next
note that

∆u♯m = ∆um −∆um 4T ϑm − um 4T ∆ϑm − 2∇um 4T ∇ϑm.

We have ∆um ∈ C0((0, L)2), since um ∈ Dom(Hξm). What is more, ∆um 4T ϑm ∈
C0((0, L)2) and um4T ∆ϑm ∈ C0((0, L)2) by Lemma 1.44 using that ∆ does not change
boundary conditions. Finally, the most tricky term, ∇um 4T ∇ϑm = ∑2

i=1 ∂ium 4T

∂iϑm, needs to be treated by an extension of the methods of [CvZ19, Section 4] to
mixed boundary conditions, which is implicitly assumed in [CvZ19, Definition 5.2]. We
therefore get ∆u♯m ∈ C0((0, L)2). Then ∂tu

♯
m = ∆u♯m + Φ♯

m ∈ C0((0, L)2), since also
Φ♯
m ∈ C0((0, L)2) by what we have already established.

Consequently, u♯m is a strong solution to the PDE (6) in the sense of semigroup theory
with respect to ∆. This yields the variation-of-constants representations

um(t) = Ptu
m
0 +

∫ t

0
Pt−s((ξm − cm)um(s))ds,

u♯m(t) = Ptu
♯
m(0) +

∫ t

0
Pt−sΦ♯

m(s)ds.

Hence, finally for the paraproduct term,

(um 4T ϑm)(t) = Pt(um0 4 ϑm) +
∫ t

0
Pt−sL(um 4T ϑm)(s)ds.

There is one technical subtlety that we need to discuss: The commutator R was only
defined implicitly beyond smooth functions. Hence, we need to show that the identity
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R(um, ξm, ϑm) = (um4ϑm)�ξm−um(ϑm�ξm) also holds for um ∈ Cα+2
d . We have seen

in the proof of Lemma 1.17, that one can approximate um in Cα+2−δ
d , 0 < δ < α+ 2, by

ukm ∈ Sd([0, L]2). Fortunately, the noise is still smooth, so we get for δ < −(2α+ 2) the
(non-natural) bounds

∥R(ukm − um, ξm, ϑm)∥C3α+4
d

≲ ∥ukm − um∥Cα+2−δ
d

∥ξm∥Cα
n
∥ϑm∥Cα+2+δ

n
,

and
∥((ukm − um) 4 ϑm) � ξm∥C3α+4

d
≲ ∥ukm − um∥Cα+2−δ

d
∥ϑm∥C2α+4

n
∥ξm∥Cα

n
,

∥(ukm − um)(ϑm � ξm)∥C3α+4
d

≲ ∥ukm − um∥Cα+2−δ
d

∥ξm∥Cα
n
∥ϑm∥C2α+4

n
.

Letting k →∞ yields that R(um, ξm, ϑm) = (um 4 ϑm) � ξm − um(ϑm � ξm).
Using the various bounds established above, we arrive at the following bound for Φ♯

m:

sup
0≤t≤T

(
t(α+2)/2∥Φ♯

m(t)∥C2(α+2)−2
d

)
≲ T (α+2)/2∥um∥L α+2

d,T

(
∥ϑm∥Cα+2

n
+ ∥ξm∥Cα

n
+ ∥ξm∥Cα

n
∥ϑm∥Cα+2

n

)
+ T (α+2)/2∥um∥L α+2

d,T
∥ϑm � ξm − cm∥C2α+2

n
(7)

+ T ε/2 sup
t∈[0,T ]

(
t(α+2−ε)/2∥u♯m(t)∥C2(α+2)−4ε

d

)
∥ξm∥Cα+4ε

n
,

where ε ∈ (0, 1/4(−1− α)). We stress that we used that the regularity of white noise is
not sharp, i.e. we may assume that ξm actually lies in a space of higher regularity. This
allows us to acquire a bound in terms of um in a space of lower regularity. Also note that
ϑm was chosen such that Lϑm = (∂t−∆)ϑm = ξm−ϑm. This was used such that terms
of lesser regularity cancel in Φ♯

m and consequently that u♯m is of the prescribed regularity.

Step 1: The L α+2
d,T -regularity of um.

We use the decomposition
um = u♯m + um 4T ϑm = u♯m + P (um0 4 ϑm) + IL(um 4T ϑm).

By Lemma 1.44,
∥L(um 4T ϑm)∥CT Cα

d
≤ ∥L(um 4T ϑm)− um 4T Lϑm∥CT Cα

d
+ ∥um 4T (ξm − ϑm)∥CT Cα

d

≲ ∥um∥L α+2−ε
d,T

∥ϑm∥Cα+2+ε
n

+ ∥um∥L α+2−ε
d,T

(∥ξm∥Cα+ε
n

+ ∥ϑm∥Cα+2+ε
n

).

We get by Lemma 1.39 and Lemma 1.32,
∥um∥L α+2

d,T
≲ ∥u♯m∥L α+2

d,T
+ ∥um0 4 ϑm∥Cα+2

d
+ ∥L(um 4 ϑm)∥CT Cα

d

≲ ∥u♯m∥L α+2
d,T

+ ∥um0 ∥Cα+2
d
∥ϑm∥Cα+2

n

+ ∥um∥L α+2−ε
d,T

∥ϑm∥Cα+2+ε
n

+ ∥um∥L α+2−ε
d,T

(∥ξm∥Cα+ε
n

+ ∥ϑm∥Cα+2+ε
n

)

≲ ∥u♯m∥L α+2
d,T

+ ∥um0 ∥Cα+2
d

(∥ξm∥Cα+ε
n

+ ∥ϑm∥Cα+2+ε
n

),
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where in the last inequality we absorbed some terms for T sufficiently small.
Step 2: The L α+2

d,T -regularity of u♯m.
We proceed as in [GIP15, Section 5] and use the decomposition u♯m = Pu♯m(0) + IΦ♯

m.
We get by Lemma 1.39,

∥Pu♯m(0)∥L α+2
d,T

≲ ∥u♯m(0)∥Cα+2
d

≲ ∥um0 ∥Cα+2
d

(1 + ∥ϑm∥Cα+2
n

).

Next by Lemma 1.36,∥∥∥∥∫ t

0
Pt−sΦ♯

m(s)ds
∥∥∥∥

Cα+2
d

≤
∫ t

0
∥Pt−sΦ♯

m(s)∥Cα+2
d

ds ≲
∫ t

0
(t− s)(α+2)/2−1∥Φ♯

m(s)∥C2(α+2)−2
d

ds

≤
∫ t

0
(t− s)(α+2)/2−1s−(α+2)/2ds sup

0≤s≤T

(
s(α+2)/2∥Φ♯

m(s)∥C2(α+2)−2
d

)
.

Note that for the singularity,∫ t

0
(t− s)(α+2)/2−1s−(α+2)/2ds =

∫ 1

0
t(α+2)/2−1(1− s)(α+2)/2−1t−(α+2)/2s−(α+2)/2tds ≲ 1.

Next for the temporal Hölder-regularity of the integral, we decompose it as∫ t

0
Pt−rΦ♯

m(r)dr −
∫ s

0
Ps−rΦ♯

m(r)dr

=
∫ t

s
Pt−rΦ♯

m(r)dr +
∫ s

0
(Pt−s − 1)Ps−rΦ♯

m(r)dr.

We compute for the first term with Lemma 1.36,∥∥∥∥∫ t

s
Pt−rΦ♯

m(r)dr
∥∥∥∥
L∞
≤
∫ t

s
∥Pt−rΦ♯

m(r)∥L∞dr

≲ lim
δ↓0

∫ t

s
∥Pt−rΦ♯

m(r)∥Cδ
d
dr ≲ lim

δ↓0

∫ t

s
(t− r)(α+2)−1−δ/2∥Φ♯

m(r)∥C2(α+2)−2
d

dr

≲ (t− s)(α+2)/2 lim
δ↓0

∫ t

s
(t− r)(α+2)/2−1−δ/2r−(α+2)/2dr

× sup
0≤r≤T

(
r(α+2)/2∥Φ♯

m(r)∥C2(α+2)−2
d

)
.

For the singularity,∫ t

s
(t− r)(α+2)/2−1−δ/2r−(α+2)/2dr ≤ t−δ/2

∫ 1

0
(1− r)(α+2)/2−1−δ/2r−(α+2)/2dr,
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which converges as δ ↓ 0 by the dominated convergence theorem. For the second term
it follows by Lemma 1.38 and Lemma 1.36,∥∥∥∥∫ s

0
(Pt−s − 1)Ps−rΦ♯

m(r)dr
∥∥∥∥
L∞

≤
∫ s

0
∥(Pt−s − 1)Ps−rΦ♯

m(r)∥L∞dr ≲
∫ s

0
(t− s)(α+2)/2∥Ps−rΦ♯

m(r)∥Cα+2
d

dr

≲
∫ s

0
(t− s)(α+2)/2(s− r)(α+2)/2−1∥Φ♯

m(r)∥C2(α+2)−2
d

dr

≤ (t− s)(α+2)/2
∫ s

0
(s− r)(α+2)/2−1r−(α+2)/2dr sup

0≤r≤T

(
r(α+2)/2∥Φ♯

m(r)∥C2(α+2)−2
d

)
.

The singularity is the same as before. Consequently, we get that

∥u♯m∥L α+2
d,T

≲ ∥um0 ∥Cα+2
d

(1 + ∥ϑm∥Cα+2
n

) + sup
0≤t≤T

(
t(α+2)/2∥Φ♯

m(t)∥C2(α+2)−2
d

)
.

Step 3: The L
(α+2+ε)/2,2(α+2)−2ε
d,T -regularity of u♯m.

We use the decomposition u♯m = Pu♯m(0) + IΦ♯
m. By Lemma 1.40,

∥Pu♯m(0)∥
L

(α+2+ε)/2,2(α+2)−2ε
d,T

≲ ∥u♯m(0)∥C(α+2)−3ε
d

≲ ∥um0 ∥Cα+2
d

(1 + ∥ϑm∥Cα+2
n

),

where we chose in the notation of the lemma, β = 2(α+ 2)− 2ε and δ = −(α+ 2) + 3ε.
Next, again by Lemma 1.40,

∥IΦ♯
m∥L (α+2+ε)/2,2(α+2)−2ε

d,T

≲ ∥Φ♯
m∥M(α+2+ε)/2

T C2(α+2)−2−2ε
d

.

All in all this yields

∥u♯m∥L (α+2+ε)/2,2(α+2)−2ε
d,T

≲ ∥um0 ∥Cα+2
d

(1 + ∥ϑm∥Cα+2
n

)

+ T ε/2 sup
0≤t≤T

(
t(α+2)/2∥Φ♯

m(t)∥C2(α+2)−2
d

)
.

Step 4: Closing the bounds.
In this step we derive closed forms of the bounds above. We have by Steps 1 and 2,

∥um∥L α+2
d,T

≲ ∥u♯m∥L α+2
d,T

+ ∥um0 ∥Cα+2
d

(∥ξm∥Cα+ε
n

+ ∥ϑm∥Cα+2+ε
n

)

≲ ∥um0 ∥Cα+2
d

(∥ϑm∥Cα+2+ε
n

+ ∥ξm∥Cα+ε
n

+ 1) + sup
0≤t≤T

(
t(α+2)/2∥Φ♯

m(t)∥C2(α+2)−2
d

)
.

By plugging this into (7), absorbing some terms for T sufficiently small and applying
Lemma 1.35,

sup
0≤t≤T

(
t(α+2)/2∥Φ♯

m(t)∥C2(α+2)−2
d

)
≲ T (α+2)/2∥um0 ∥Cα+2

d
(∥ϑm∥Cα+2+ε

n
+ ∥ξm∥Cα+ε

n
+ 1)(∥ϑm∥Cα+2

n
+ ∥ξm∥Cα

n

+ ∥ξm∥Cα
n
∥ϑm∥Cα+2

n
+ ∥ϑm � ξm − cm∥C2α+2

n
) + T ε/2∥u♯m∥L (α+2+ε)/2,2(α+2)−2ε

d,T

∥ξm∥Cα+4ε
n

.
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1.5 The Mollified Dirichlet Parabolic Anderson Model

In the application of Lemma 1.35, we used the coefficients β = 2(α + 2) − 2ε, γ =
(α + 2 + ε)/2 and ε′ = 2ε. By applying the bound of Step 3 and absorbing one more
term for T sufficiently small,

sup
0≤t≤T

(
t(α+2)/2∥Φ♯

m(t)∥C2(α+2)−2
d

)
≲ T (α+2)/2∥um0 ∥Cα+2

d
(∥ϑm∥Cα+2+ε

n
+ ∥ξm∥Cα+ε

n
+ 1)(∥ϑm∥Cα+2

n
+ ∥ξm∥Cα

n

+ ∥ξm∥Cα
n
∥ϑm∥Cα+2

n
+ ∥ϑm � ξm − cm∥C2α+2

n
) + T ε/2∥um0 ∥Cα+2

d
(1 + ∥ϑm∥Cα+2

n
)∥ξm∥Cα+4ε

n
.

By plugging this back into the bound for ∥um∥L α+2
d,T

, we get the following:

Lemma 1.46
With the notation of Lemma 1.45, we get the bound for T sufficiently small:

∥um∥L α+2
d,T

≲ ∥um0 ∥Cα+2
d

(∥ϑm∥Cα+2+ε
n

+ ∥ξm∥Cα+ε
n

+ 1)

+ T (α+2)/2∥um0 ∥Cα+2
d

(∥ϑm∥Cα+2+ε
n

+ ∥ξm∥Cα+ε
n

+ 1)(∥ϑm∥Cα+2
n

+ ∥ξm∥Cα
n

+ ∥ξm∥Cα
n
∥ϑm∥Cα+2

n
+ ∥ϑm � ξm − cm∥C2α+2

n
) + T ε/2∥um0 ∥Cα+2

d
(1 + ∥ϑm∥Cα+2

n
)∥ξm∥Cα+4ε

n
.

The sufficiency of the time T > 0 does not depend on um0 , just on the noise terms in
appropriate norms.

By repeating Steps 1 and 2, we also get the following bounds:

∥um − Pum0 ∥L α+2
d,T

≲ ∥u♯m − Pum0 ∥L α+2
d,T

+ ∥um0 ∥Cα+2
d

(∥ξm∥Cα+ε
n

+ ∥ϑm∥Cα+2+ε
n

),

and

∥u♯m − Pum0 ∥L α+2
d,T

≲ ∥um0 ∥Cα+2
d
∥ϑm∥Cα+2

n
+ ∥Φ♯

m∥M(α+2)/2
T C2(α+2)−2

d

.

Those yield the following:

Lemma 1.47
With the notation of Lemma 1.45, we get the bound for T sufficiently small:

∥um − Pum0 ∥L α+2
d,T

≲ ∥um0 ∥Cα+2
d

(∥ϑm∥Cα+2+ε
n

+ ∥ξm∥Cα+ε
n

)

+ T (α+2)/2∥um0 ∥Cα+2
d

(∥ϑm∥Cα+2+ε
n

+ ∥ξm∥Cα+ε
n

+ 1)(∥ϑm∥Cα+2
n

+ ∥ξm∥Cα
n

+ ∥ξm∥Cα
n
∥ϑm∥Cα+2

n
+ ∥ϑm � ξm − cm∥C2α+2

n
) + T ε/2∥um0 ∥Cα+2

d
(1 + ∥ϑm∥Cα+2

n
)∥ξm∥Cα+4ε

n
.

The sufficiency of the time T > 0 does not depend on um0 , just on the noise terms in
appropriate norms.

We can now close those bounds for arbitrary T > 0.
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1.5 The Mollified Dirichlet Parabolic Anderson Model

Lemma 1.48
Let for m ∈ N, um0 ∈ Im

PAM. Then there exist some Cm1 , Cm2 > 0 such that for any T > 0,

∥um∥L α+2
d,T
≤ ∥um0 ∥Cα+2

d
Cm1 exp(Cm2 T ).

The constants Cm1 , Cm2 are uniformly bounded in m. What is more, there exists some
constants K(θ), A(θ) > 0, for any θ ∈ Xα+4ε

n , depending only on appropriate norms of
θ, such that

∥um − Pum0 ∥L α+2
d,T
≤ ∥um0 ∥Cα+2

d
K(ξm) exp(log(K(ξm))(A(ξm) + 1)T ).

In particular, if θk → θ ∈ Xα+4ε
n as k → ∞, then A(θk) and K(θk) are bounded

uniformly in k. Also, if θk → 0 in Xα+4ε
n , then K(θk)→ 0.

Proof
By Lemma 1.46 for T ≤ (A(ξm) + 1)−1,

∥um∥L α+2
d,T

≲ ∥um0 ∥Cα+2
d

(∥ϑm∥Cα+2+ε
n

+ ∥ξm∥Cα+ε
n

+ 1)

+ ∥um0 ∥Cα+2
d

(∥ϑm∥Cα+2+ε
n

+ ∥ξm∥Cα+ε
n

+ 1)(∥ϑm∥Cα+2
n

+ ∥ξm∥Cα
n

+ ∥ξm∥Cα
n
∥ϑm∥Cα+2

n

+ ∥ϑm � ξm − cm∥C2α+2
n

) + ∥um0 ∥Cα+2
d

(1 + ∥ϑm∥Cα+2
n

)∥ξm∥Cα+4ε
n

,

where A(ξm) > 0 is some constant depending on the noise in appropriate norms. Note
that we have bounded T ≤ 1. Also, we may assume that the contribution in the sup-
pressed constant by the absorptions carried out above can be bounded by e.g. 2 after
increasing A(ξm). In short, for some Km > 1 depending only on noise terms in appro-
priate norms, ∥um∥L α+2

d,T
≤ Km∥um0 ∥Cα+2

d
.

Let T > 0 be arbitrary and let N ∈ N be large enough such that T < N(A(ξm) + 1)−1.
Then by iterating the bound,

∥um∥L α+2
d,T
≤ ∥um∥L α+2

d,N(A(ξm)+1)−1
≤ KN

m∥um0 ∥Cα+2
d

.

We can choose ⌈(A(ξm) + 1)T ⌉ ≤ (A(ξm) + 1)T + 1 =: N . Consequently, using that
Km = exp(log(Km)),

∥um∥L α+2
d,T
≤ exp(log(Km)((A(ξm) + 1)T + 1))∥um0 ∥Cα+2

d
. (8)

The second claim follows as the above by choosing

K(ξm) = C((∥ξm∥Cα+ε
n

+ ∥ϑm∥Cα+2+ε
n

) + (∥ϑm∥Cα+2+ε
n

+ ∥ξm∥Cα+ε
n

+ 1)(∥ϑm∥Cα+2
n

+ ∥ξm∥Cα
n

+ ∥ξm∥Cα
n
∥ϑm∥Cα+2

n
+ ∥ϑm � ξm − cm∥C2α+2

n
) + (1 + ∥ϑm∥Cα+2

n
)∥ξm∥Cα+4ε

n
),

for some constant C > 0.
□

Let us derive a bound on the L
2(α+2)
d,T -norm of u♯m for arbitrary T > 0 after some (small)

amount of time has passed.
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1.5 The Mollified Dirichlet Parabolic Anderson Model

Lemma 1.49
Let T > 0 and 0 < ε < 1/4(−1−α). Let θt be the shift operator, i.e. (f◦θt)(s) := f(s+t).
We define

k1(ξm) := C(1 + ∥ξm∥Cα+4ε
n

),

k2(ξm) := C
(
∥ϑm∥Cα+2

n
+ ∥ξm∥Cα

n
+ ∥ξm∥Cα

n
∥ϑm∥Cα+2

n
+ ∥ϑm � ξm − cm∥C2α+2

n

)
,

for some specific constant C > 0, see the proof below.
Let 0 < d(ξm) < (1 + c∥ξm∥Cα+4ε

n
)−1/ε ∧ T be arbitrarily small, where c is another

constant. Assume N(T, ξm) := ⌊T/d(ξm)⌋ ≠ T/d(ξm). Then it holds that

∥u♯m ◦ θT−N(T,ξm)d(ξm)∥L 2(α+2)−2ε

d,N(T,ξm)d(ξm)

≤
N(T,ξm)−1∑

j=0
∥u♯m(T −N(T, d(ξm))d(ξm))∥C2(α+2)−2ε

d

k1(ξm)N(T,d(ξm))−j

+ ∥um∥L α+2
d,T

k2(ξm)

N(T,d(ξm))−j−1∑
i=0

ki1(ξm)

 .

Proof
Assume 0 < ε < 1/4(−1 − α). Let T > 0 be arbitrary and let 0 < d(ξm) < (1 +
c∥ξm∥Cα+4ε

n
)−1/ε ∧ T , where c is some constant as determined below. It follows by an

elementary calculation that u♯m ◦ θT−d(ξm) = P (u♯m(T − d(ξm))) + I(Φ♯
m ◦ θT−d(ξm)).

Consequently, it holds that

∥u♯m ◦ θT−d(ξm)∥L 2(α+2)−2ε

d,d(ξm)

≲ ∥u♯m(T − d(ξm))∥C2(α+2)−2ε
d

+ ∥Φ♯
m ◦ θT−d(ξm)∥Cd(ξm)C2(α+2)−2−2ε

d

.

In order to estimate terms involving the modified paraproduct, we simply bound e.g.

∥(um 4T Lϑm − L(um 4T ϑm)) ◦ θT−d(ξm)∥Cd(ξm)C2(α+2)−2−2ε
d

≤ ∥um 4T Lϑm − L(um 4T ϑm)∥
CT C2(α+2)−2

d

.

Therefore,

∥Φ♯
m ◦ θT−d(ξm)∥Cd(ξm)C2(α+2)−2−2ε

d

≲ ∥um∥L α+2
d,T

(
∥ϑm∥Cα+2

n
+ ∥ξm∥Cα

n
+ ∥ξm∥Cα

n
∥ϑm∥Cα+2

n
+ ∥ϑm � ξm − cm∥C2α+2

n

)
+ ∥u♯m ◦ θT−d(ξm)∥Cd(ξm)C2(α+2)−4ε

d

∥ξm∥Cα+4ε
n

.
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Next,

∥u♯m ◦ θT−d(ξm)∥L 2(α+2)−4ε

d,d(ξm)

≲ ∥u♯m(T − d(ξm))∥C2(α+2)−2ε
d

+ d(ξm)ε∥u♯m ◦ θT−d(ξm)∥L 2(α+2)−2ε

d,d(ξm)
.

Consequently by absorbing one term,

∥Φ♯
m ◦ θT−d(ξm)∥Cd(ξm)C2(α+2)−2−2ε

d

≲ ∥um∥L α+2
d,T

(
∥ϑm∥Cα+2

n
+ ∥ξm∥Cα

n
+ ∥ξm∥Cα

n
∥ϑm∥Cα+2

n
+ ∥ϑm � ξm − cm∥C2α+2

n

)
+ ∥u♯m(T − d(ξm))∥C2(α+2)−2ε

d

∥ξm∥Cα+4ε
n

.

It follows that

∥u♯m ◦ θT−d(ξm)∥L 2(α+2)−2ε

d,d(ξm)
≤ ∥u♯m(T − d(ξm))∥C2(α+2)−2ε

d

k1(ξm) + ∥um∥L α+2
d,T

k2(ξm)

with

k1(ξm) := C(1 + ∥ξm∥Cα+4ε
n

),

k2(ξm) := C
(
∥ϑm∥Cα+2

n
+ ∥ξm∥Cα

n
+ ∥ξm∥Cα

n
∥ϑm∥Cα+2

n
+ ∥ϑm � ξm − cm∥C2α+2

n

)
,

for some constant C > 0. We can now repeat the derivation above to get a bound
for ∥u♯m ◦ θT−id(ξm)∥L 2(α+2)−2ε

d,d(ξm)
with i ∈ N such that id(ξm) < T . Assume N(T, ξm) :=

⌊T/d(ξm)⌋ ̸= T/d(ξm). Then, by using the bound ∥u♯m(T − d(ξm))∥C2(α+2)−2ε
d

≤ ∥u♯m ◦
θT−2d(ξm)∥L 2(α+2)−2ε

d,d(ξm)
, we get

∥u♯m ◦ θT−d(ξm)∥L 2(α+2)−2ε

d,d(ξm)
≤ ∥u♯m(T −N(T, d(ξm))d(ξm))∥C2(α+2)−2ε

d

k1(ξm)N(T,ξm)

+ ∥um∥L α+2
d,T

k2(ξm)

N(T,ξm)−1∑
i=0

ki1(ξm)

 .
Finally, we can decompose for T −N(T, ξm)d(ξm) ≤ t < T ,

u♯m(t) =
N(T,ξm)−1∑

j=0
1[T−(j+1)d(ξm),T−jd(ξm))(t)u♯m(t).

The triangle inequality now yields the bound

∥u♯m ◦ θT−N(T,ξm)d(ξm)∥L 2(α+2)−2ε

d,N(T,ξm)d(ξm)
≤

N(T,ξm)−1∑
j=0

∥u♯m ◦ θT−(j+1)d(ξm)∥L 2(α+2)−2ε

d,d(ξm)
.
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To see this, let β ∈ (0, 1], 0 < t1 < T , and 0 ≤ s < t1 < t ≤ T . Then, ∥f(t)− f(s)∥L∞ ≤
∥f(t)− f(t1)∥L∞ + ∥f(t1)− f(s)∥L∞ , |t− s|β ≥ |t− t1|β and |t− s|β ≥ |t1 − s|β.
Consequently,

∥u♯m ◦ θT−N(T,ξm)d(ξm)∥L 2(α+2)−2ε

d,N(T,ξm)d(ξm)

≤
N(T,ξm)−1∑

j=0
∥u♯m(T −N(T, d(ξm))d(ξm))∥C2(α+2)−2ε

d

k1(ξm)N(T,d(ξm))−j

+ ∥um∥L α+2
d,T

k2(ξm)

N(T,d(ξm))−j−1∑
i=0

ki1(ξm)

 .
□

One can now combine this with the bound of Step 3 to get a closed expression.

1.6 Around the Space IPAM

We still assume that the initial conditions lie in the space Im
PAM = Dom(Hξm)∩ Cα+2

d in
order to use the variation-of-constants representations together with Schauder estimates.
The space Im

PAM however does not enjoy good properties, in particular it is not closed
under taking squares. This is why, as a first step, we extend the above to other initial
conditions.

Definition 1.50
We define IPAM to be the closure of Im

PAM ⊂ C
α+2
d , that is IPAM = Im

PAM
Cα+2
d .

The space IPAM is in turn to broad. However, we can identify a reasonably large and
well-behaved subspace.

Definition 1.51
We define C(α+2)+

d := ⋃
0<δ<1−(α+2) Cα+2+δ

d .

Lemma 1.52
It holds that C(α+2)+

d ⊂ IPAM.

Proof
Let 0 < δ < 1 − (α + 2) and u ∈ Cα+2+δ

d . We need to show that we can approximate
u with uk ∈ Im

PAM, k ∈ N, in Cα+2
d . Define uk := PDir

1/ku. From what we have seen in
the proofs of Lemma 1.36 and Lemma 1.44, ∆̃uk = ∆P per

1/k ũ ∈ C(Td2L). Consequently,
uk ∈ Im

PAM and as we have seen in the proof of Theorem 1.17, uk → u in Cα+2
d . This

yields the claim.
□

We can now extend the bounds above to initial conditions in C(α+2)+
d .
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Lemma 1.53
The bounds of Lemma 1.46, Lemma 1.47, Lemma 1.48 and Lemma 1.49 hold true for
um0 ∈ C

(α+2)+
d .

Proof
It suffices to show that the variation-of-constants representations of um and u♯m, and
the relation um = um 4T ϑm + u♯m carry over to um0 ∈ C

(α+2)+
d . Let um0 ∈ C

(α+2)+
d . By

Lemma 1.52, we define for k ∈ N, um,k0 ∈ Im
PAM such that um,k0 → um0 in Cα+2

d as k →∞.
We define ukm to be a solution to the mollified PAM started from um,k0 , with repres-
entation ukm = Pum,k0 + I((ξm − cm)ukm). As um,k0 → um0 in Cα+2

d , we get by [Lie89,
Theorem 13.3], that ukm → um in L α+2

d,T . Consequently by Lemma 1.39, Pum,k0 → Pum0
and I((ξm− cm)ukm)→ I((ξm− cm)um) in L α+2

d,T . Hence, um = Pum0 + I((ξm− cm)um).
We define u♯,km := ukm − ukm 4T ϑm. We have u♯,km = Pu♯,km (0) + IΦ♯,k

m with Φ♯,k
m being

analogous to Φ♯
m. So, u♯,km (0) = um,k0 − um,k0 4 ϑm → um0 − um0 4 ϑm in Cα+2

d and by
Lemma 1.44 it follows that u♯,km → u♯m in CTCα+2

d with u♯m := um − um 4T ϑm.
Next, Pu♯,km (0) → Pu♯m(0) in L α+2

d,T . In order to show that IΦ♯,k
m → IΦ♯

m in L α+2
d,T ,

we use the smoothness of the noise to establish first Φ♯,k
m → Φ♯

m in CTCαd . Note that
α < 2(α+ 2)− 2. Consequently, we can mostly mimic the derivation of (7) to get

∥Φ♯
m∥CT Cα

d
≲ ∥um∥L α+2

d,T
(∥ϑm∥Cα+2

n
+ ∥ξm∥Cα

n
+ ∥ξm∥Cα

n
∥ϑm∥Cα+2

n
+ ∥ξm � ϑm − cm∥C2α+2

n
)

+ sup
0≤t≤T

∥u♯m(t) � ξm∥Cα
d
,

with the non-natural bound ∥u♯m(t) � ξm∥Cα
d
≲ ∥u♯m(t)∥Cα+2

d
∥ξm∥C2α+2

n
. Using bilinearity

and the results already established, we get IΦ♯,k
m → IΦ♯

m in L α+2
d,T by another application

of Lemma 1.39.
Consequently, u♯m = Pu♯m(0)+IΦ♯

m. We have shown that um, u♯m and Φ♯
m admit exactly

the same structure as before. Therefore, all results with initial conditions in Im
PAM carry

over to solutions started from C(α+2)+
d .

□

1.7 The Dirichlet Parabolic Anderson Model

We can now derive the solution theory for the Parabolic Anderson Model with relative
ease:
Let T > 0 be arbitrary. We first control the remainder u♯m in L

(α+2+ε)/2,2(α+2)−2ε
d,T (ξm) until

some sufficiently small time 0 < T (ξm) < T , only depending on the noise in appropriate
norms, see Step 3 in the derivation of Lemma 1.46. By the above, T (ξm) is bounded
below uniformly in m. From time T (ξm) onwards, we can control the remainder by
Lemma 1.49 until the time horizon T > 0. The same also holds for Φ♯

m, see (7) and the
proof of Lemma 1.49 for the appropriate bounds.
Let now n,m ∈ N and um, un be solutions respectively. By repeating the deriva-
tion above for un − um, using bilinearity, the bounds established in Lemma 1.53 and
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1.7 The Dirichlet Parabolic Anderson Model

Lemma 1.39, we can show the local Lipschitz continuity of the solution map C(α+2)+
d ×

Cα+4ε
n ×Cα+2+4ε

n ×C2α+2+8ε
n ∋ (um0 , ξm, ϑm, ξm�ϑm−cm)→ (um, u♯m,Φ♯

m). Assume that
(um0 , ξm, ϑm, ξm � ϑm − cm)→ (u0, ξ, ϑ,Ξ), u0 ∈ C(α+2)+

d . In particular, we may assume
(um0 , ξm, ϑm, ξm � ϑm − cm)m∈N to be bounded. Hence, the solution map is Lipschitz
continuous on a relevant subspace. We define u ∈ CCα+2

d ∩ C(α+2)/2
loc L∞ to be the limit

of the continuous extension of the solution map. We get:

Theorem 1.54
Let α ∈ (−4/3,−1), ε ∈ (0, 1/4(−1 − α)) and um0 ∈ C

(α+2)+
d , m ∈ N, u0 ∈ C(α+2)+

d .
Assume (ξ,Ξ) ∈ Xα+4ε

n and suppose that (um0 , ξm, σ(D)ξm, ξm � σ(D)ξm − cm, ) →
(u0, ξ, ϑ,Ξ) with ξm ∈ Sn([0, L]2) smooth, ϑm := σ(D)ξm, cm as in the definition of
Xα+4ε
n . Let for any m ∈ N, um be the unique solution to{

Lum = (ξm − cm)um in (0,∞)× (0, L)2,

um(0) = um0 in [0, L]2, um = 0 on [0,∞)× ∂[0, L]2.

Then there exists some u ∈ CCα+2
d ∩ C(α+2)/2

loc L∞ such that um → u in L α+2
d,T for any

T > 0. What is more for any T > 0 there exists some function u♯ such that u♯m → u♯ in
L α+2

d,T as m→∞. Furthermore, there exists some 0 < T (ξ) < T , such that for arbitrarily
small 0 < T ′ ≤ T (ξ) < T , u♯m → u♯ in L

(α+2+ε)/2,2(α+2)−2ε
d,T ′ and u♯m ◦ θT ′ → u♯ ◦ θT ′ in

L
2(α+2)−2ε
d,T−T ′ .

The solution u only depends on (u0, ξ, ϑ,Ξ) but not on the approximating family. We
call it a paracontrolled solution to the Parabolic Anderson Model{

∂tu = Hξu in (0,∞)× (0, L)2,

u(0) = u0 in [0, L]2, u = 0 on [0,∞)× ∂[0, L]2.

We will often use the notation um(t) = Tmt u
m
0 and u(t) = Ttu0. Note that T applied to

functions always refers to the solution operator, not the time horizon.

As in Section 1.6 for δ > 0,

Cα+2+δ
d ⊂ Cα+2+δ/2

d ∩Dom(Hξm)
Cα+2+δ/2
d

.

Also, the regularity of white noise is not sharp. Hence if we assume that u0 ∈ Cα+2+δ
d ,

0 < δ < 1 − (α + 2), then we can show that as above, Tsu0 ∈ Cα+2+δ/2
d , s > 0.

Consequently, expressions such as TtTsu0 and even Tt(Tsu0)2 are well-defined.
The solution also retains its paracontrolled structure:

Lemma 1.55
Let u be the solution constructed in Theorem 1.54. It holds that

u = Pu0 + I(ξ ⋄ u), u = u4T ϑ+ u♯, u♯ = Pu♯0 + IΦ♯, u♯0 = u0 − u0 4 ϑ,
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1.7 The Dirichlet Parabolic Anderson Model

where

ξ ⋄ u := ξ 4 u+ u4 ξ + ξ � u♯ + (u4T ϑ− u4 ϑ) � ξ + uΞ + R(u, ξ, ϑ),

and

Φ♯ := (u4T Lϑ− L(u4T ϑ)) + (u4 ξ − u4 Lϑ) + (u4 Lϑ− u4T Lϑ) + ξ 4 u

+ R(u, ξ, ϑ) + uΞ + u♯ � ξ + (u4T ϑ− u4 ϑ) � ξ.

Proof
Let 0 < T (ξ) < T . It follows by the above that um → u in L α+2

d,T , u♯m → u♯ in L α+2
d,T , in

L
(α+2+ε)/2,2(α+2)−2ε
d,T (ξ) , and from T (ξ) onwards in L

2(α+2)−2ε
d,T−T (ξ) .

As um = um 4T ϑm + u♯m, it follows by Lemma 1.44, that u = u 4T ϑ + u♯. Next by
Theorem 1.16, Theorem 1.17, Theorem 1.22 and Lemma 1.44, (ξm − cm)um → ξ ⋄ u
in M

(α+2+ε)/2
T (ξ) Cαd , and from T (ξ) onwards in CT−T (ξ)Cαd . Consequently, we can combine

both to get convergence in M (α+2+ε)/2
T Cαd . Therefore, by Lemma 1.40, u = Pu0+I(ξ⋄u).

By the results cited above, Φ♯
m → Φ♯ in M

(α+2+ε)/2
T C2(α+2)−2ε−2

d . It follows by Lemma
1.40, IΦ♯

m → IΦ♯ in L
(α+2+ε)/2,2(α+2)−2ε
d,T . Also, u♯m(0) = um0 − um0 4 ϑm → u0 − u0 4 ϑ

in Cα+2
d . Again by Lemma 1.40, Pu♯m(0) → Pu♯0 in L

(α+2+ε)/2,2(α+2)−2ε
d,T . Hence, u♯ =

Pu♯0 + IΦ♯, which yields the claim.
□

The following results give some basic properties of the PAM. We first establish the
maximum principle.

Lemma 1.56
Let u0 ∈ C(α+2)+

d , u0 ≥ 0. Then it follows that Ttu0 ≥ 0 for any t ≥ 0.

Proof
Let u0 ∈ C(α+2)+

d , u0 ≥ 0. By applying the maximum principle [Eva10, Theorem 7.1.4.9]
to the mollified PAM started from u0, the claim follows by the convergence of Theorem
1.54.

□
The following is an analogue of Lemma 1.48 for our paracontrolled solution.

Lemma 1.57
Let u0 ∈ C(α+2)+

d . Then there exists some C1, C2 > 0 such that for any T > 0,

∥u∥L α+2
d,T
≤ C1∥u0∥Cα+2

d
exp(C2T ).

Also, with the same A,K as in Lemma 1.48,

∥u− Pu0∥L α+2
d,T
≤ ∥u0∥Cα+2

d
K(ξ) exp(log(K(ξ))(A(ξ) + 1)T ).
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1.7 The Dirichlet Parabolic Anderson Model

Proof
The paracontrolled solution u has by Lemma 1.55 the same structure as the um. The
bounds follow exactly as in Lemma 1.48.

□
The continuous dependence of the solution on the initial condition holds:

Lemma 1.58
Let T > 0. Then it holds that C(α+2)+

d ∋ u0 7→ Tu0 ∈ L α+2
d,T is continuous.

Proof
Let u0 ∈ C(α+2)+

d , uk ∈ C(α+2)+
d , k ∈ N, such that uk → u0 ∈ Cα+2

d . We get

∥Tu0 − Tuk∥L α+2
d,T
≤ ∥Tu0 − Tmu0∥L α+2

d,T
+ ∥Tmu0 − Tmuk∥L α+2

d,T

+ ∥Tmuk − Tuk∥L α+2
d,T

. (9)

Let ε > 0. Fix k ∈ N large enough such that ∥u0 − uk∥Cα+2
d

< ε. The convergence of the
second term in (9) follows by Lemma 1.48 and bilinearity, since for some Cm1 , Cm2 > 0
that are bounded in m,

∥Tmu0 − Tmuk∥L α+2
d,T
≤ ∥u0 − uk∥Cα+2

d
Cm1 exp(Cm2 T ).

Upon choosing m larger if needed, we can bound the first and the third term in (9) for
k fixed by ε, using bilinearity and Lemma 1.57.

□
Next we need to define a space on which Hξ enjoys much better regularity properties
than previously discussed. It follows that for t > 0 and um0 ∈ Im

PAM,

Hξm

∫ t

0
Tms u

m
0 ds = Tmt u

m
0 − um0 .

Therefore we define with some slight abuse of notation for u0 ∈ C(α+2)+
d ,

Hξ

∫ t

0
Tsu0ds := Ttu0 − u0. (10)

With this it follows as in Theorem 1.54 that if um0 → u0 in Cα+2
d as m→∞, then∫ t

0
Tms u

m
0 ds→

∫ t

0
Tsu0ds, Hξm

∫ t

0
Tms u

m
0 ds→Hξ

∫ t

0
Tsu0ds in Cα+2

d . (11)

Definition 1.59
Let for t > 0, um0 ∈ Im

PAM, u0 ∈ C(α+2)+
d , Amt um0 :=

∫ t
0 T

m
s u

m
0 ds and Atu0 :=

∫ t
0 Tsu0ds.
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1.8 The Backwards Dirichlet Parabolic Anderson Model with Forcing

We define the spaces

DHξm
:= {Amt um0

∣∣um0 ∈ Im
PAM, u

m
0 ≥ 0, um0 ̸= 0, t > 0},

DHξ
:= {Atu0

∣∣u0 ∈ C(α+2)+
d , u0 ≥ 0, u0 ̸= 0, t > 0}.

We define HξAtu0 := Ttu0 − u0 and for t > s, Hξ(Atu0 − Asu0) := Ttu0 − Tsu0. For
arbitrary t, s > 0, we define Hξ(Atu0 +Asu0) := HξAtu0 + HξAsu0.

The space DHξ
is dense in the non-negative, non-zero functions of C(α+2)+

d by the fol-
lowing argument:

Lemma 1.60 [PR19, Lemma 3.5]
Let u0 ∈ C(α+2)+

d , u0 ≥ 0, u0 ̸= 0. We define for k ∈ N, uk ∈ DHξ
by uk := A1/k(ku0).

Then it holds that ∥u0 − uk∥Cα+2
d
→ 0.

Proof
The claim follows by the continuity of r 7→ Tru0 in Cα+2

d , since uk = k
∫ 1/k

0 Tru0dr.
□

1.8 The Backwards Dirichlet Parabolic Anderson Model with Forcing

In this section we consider the equation given by{
(∂s + Hξ)ut = f in (0, t)× (0, L)2,

ut(t) = u0 in [0, L]2, ut = 0 on [0, t]× ∂[0, L]2,

where t > 0, u0 ∈ C(α+2)+
d , u0 ≥ 0, u0 ̸= 0, and f ∈ C([0, t], C(α+2)+

d ), f ≥ 0, f(s) ̸= 0,
0 ≤ s ≤ t.
This equation will be useful in an intermediate step towards the uniqueness of the killed
rough SBM. The following arguments are essentially due to [PR19, Lemma 4.6], with
modifications to treat the Dirichlet boundary conditions.
Assume first that u0 ∈ DHξ

and f : [0, t) → DHξ
is piecewise constant. We then define

a solution in the mild formulation by

ut(s) := Tt−su0 −
∫ t

s
Tr−sf(r)dr.

Assume we have u0 = Alv, v ∈ C(α+2)+
d , v ≥ 0, v ̸= 0, l > 0. Note that Tt−su0 =∫ t−s+l

t−s Trvdr. Using that f is piecewise constant, we get for the redefined Hξ,

Hξu
t(s) = Tt−s+lv − Tt−sv −

∫ t

s
HξTr−sf(r)dr
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1.8 The Backwards Dirichlet Parabolic Anderson Model with Forcing

and

∂su
t(s) = −Tt−s+lv + Tt−sv + f(s) +

∫ t

s
HξTr−sf(r)dr.

Consequently, ut is a pointwise solution for the redefined Hξ.
Let u0 ∈ C(α+2)+

d , u0 ≥ 0, u0 ̸= 0, and f ∈ C([0, t], C(α+2)+
d ), f ≥ 0, f(s) ̸= 0, 0 ≤ s ≤ t.

By Lemma 1.60, there exist some uk0 ∈ DHξ
, fk : [0, t)→ DHξ

piecewise constant, k ∈ N,
such that uk0 → u0 in Cα+2

d and fk → f pointwise a.e. and uniformly bounded in time.
In particular, uk0, fk can be realised as

uk0 := k

∫ 1/k

0
Tru0dr, fk(s) =

k−1∑
i=0

1[tki ,t
k
i+1)(s)k

∫ 1/k

0
Tzf(tki )dz,

for some partition (tki )i∈{1,...,k}, tk0 = 0, tkk = t, such that limk→∞ supi∈{1,...,k} t
k
i−tki−1 = 0.

To simplify the notation, we denote for any s ∈ [0, t), ⌊s⌋k = max{tki |tki ≤ s}.
By the uniform continuity of [0, t] ∋ s 7→ Tt−su0 ∈ Cα+2

d , it follows that in C([0, t], Cα+2
d ),[

s 7→ Tt−su
k
0 = k

∫ t−s+1/k

t−s
Tru0dr

]
→ [s 7→ Tt−su0].

Next we claim that in C([0, t], Cα+2
d ),[

s 7→
∫ t

s
Tr−sf

k(r)dr
]
→
[
s 7→

∫ t

s
Tr−sf(r)dr

]
.

Proof of the claim: We apply Fubini’s theorem to get∫ t

s
Tr−sf

k(r)dr =
∫ t

s
k

∫ r−s+1/k

r−s
Tzf(⌊r⌋k)dzdr

=
∫ t−s

1/k

∫ z+s

z+s−1/k
kTzf(⌊r⌋k)drdz =

∫ t−s

1/k
Tz

(∫ z+s

z+s−1/k
kf(⌊r⌋k)dr

)
dz.

We have ∫ t−s

1/k
Tz

(∫ z+s

z+s−1/k
kf(⌊r⌋k)dr

)
dz

=
∫ t−s

1/k
Tzf(z + s)dz +

∫ t−s

1/k
Tz

(∫ z+s

z+s−1/k
kf(⌊r⌋k)dr − f(z + s)

)
dz.

For the second term we choose by the uniform continuity of f for ε > 0, k sufficiently
large uniformly in s, such that∥∥∥∥∥

∫ z+s

z+s−1/k
kf(⌊r⌋k)dr − f(z + s)

∥∥∥∥∥
Cα+2
d

< ε.
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1.9 The Evolution Equation for the Killed Mollified Super Brownian Motion

Therefore for some C > 0,∥∥∥∥∥
∫ t−s

1/k
Tz

(∫ z+s

z+s−1/k
kf(⌊r⌋k)dr − f(z + s)

)
dz

∥∥∥∥∥
Cα+2
d

≲
∫ t−s

1/k
exp(Cz)εdz.

For the first term,∥∥∥∥∥
∫ t−s

1/k
Tzf(z + s)dz −

∫ t−s

0
Tzf(z + s)dz

∥∥∥∥∥
Cα+2
d

≤
∫ s+1/k

s

∥∥Tz′−sf(z′)
∥∥

Cα+2
d

dz′

≲
∫ s+1/k

s
∥f∥CtCα+2

d
exp(C(z′ − s))dz′.

This proves the claim. We define

utk(s) := Tt−su
k
0 −

∫ t

s
Tr−sf

k(r)dr.

Then by the above, utk → ut in C([0, t], Cα+2
d ), where

ut(s) := Tt−su0 −
∫ t

s
Tr−sf(r)dr.

We call this ut a solution to the backwards Dirichlet Parabolic Anderson Model with
forcing.

1.9 The Evolution Equation for the Killed Mollified Super Brownian
Motion

In this section we construct and analyse the solution of the so-called ’Evolution Equation
for the killed mollified Super Brownian Motion’:

{
∂tϕm(t) = Hξmϕm(t)− 1

2ϕm(t)2 in (0, T )× (0, L)2,

ϕm(0) = γψ in [0, L]2, ϕm(t) = 0 on [0, T ]× ∂[0, L]2,

for ψ ∈ Im
PAM, ψ ≥ 0, t > 0 and γ > 0 sufficiently small, i.e.

Umt (γψ) := ϕm(t) = Tmt γψ −
1
2

∫ t

0
Tms ((Umt−s(γψ))2)ds. (12)

Our approach is based on Wild sums, as presented in [Eth00, Chapter 2.1]. The advant-
age of this representation is that the influence of the initial condition will be explicit, a
fact which we will use to identify the moments of the killed mollified Super Brownian
Motion. We define Sm : CTCα+2

d × CTCα+2
d → CTCα+2

d by

Sm(f, g)(t) := −1
2

∫ t

0
Tms (f(t− s, ·)g(t− s, ·))ds.
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1.9 The Evolution Equation for the Killed Mollified Super Brownian Motion

If we set up a Picard iteration we get,

ϕm0 (t) : = γTmt ψ,

ϕm1 (t) : = ϕm0 (t) + Sm(ϕm0 , ϕm0 )(t),
ϕm2 (t) : = ϕm0 (t) + Sm(ϕm1 , ϕm1 )(t)

= ϕm0 (t) + Sm((ϕm0 + Sm(ϕm0 , ϕm0 )), (ϕm0 + Sm(ϕm0 , ϕm0 )))(t)
= ϕm0 (t) + Sm(ϕm0 , ϕm0 )(t) + Sm(ϕm0 , Sm(ϕm0 , ϕm0 ))(t) + Sm(S(ϕm0 , ϕm0 ), ϕm0 )(t)
+ Sm(Sm(ϕm0 , ϕm0 ), Sm(ϕm0 , ϕm0 ))(t),

. . . .

We denote

γ−1ϕm0 = ,

γ−2Sm(ϕm0 , ϕm0 ) = ,

γ−3Sm(ϕm0 , Sm(ϕm0 , ϕm0 )) = ,

γ−3Sm(Sm(ϕm0 , ϕm0 ), ϕm0 ) = ,

γ−4Sm(Sm(ϕm0 , ϕm0 ), S(ϕm0 , ϕm0 )) = ,

. . . .

We denote the order of the tree τ , |τ |, to be the number of leaves of τ , i.e. the number
of vertices with at most one neighbour. On the other hand, when we write |τ(t, x)| then
we mean the absolute value of the number τ(t, x) ∈ R. In general, Sm(τ1, τ2) can be
constructed by joining the roots of τ1, τ2:

Sm(τ1, τ2) =: τ1 τ2
.

We define T to be the set of ordered binary rooted trees, which can be constructed
recursively by the following rule: Let T 0 := { }. We then define for n ∈ N, T n :=
{τ1 τ2 |τ1, τ2 ∈ T n−1} and T = ∪n∈NT n. Note that we do not identify isomorphic trees
for combinatorical reasons. We can then expand the solution to (12) formally in γ as a
power series in terms of such binary trees:

ϕm(t, x) =
∑
τ∈T

γ|τ |τ,

where we identify = γ−1ϕm0 and for τ such that |τ | ≥ 2, τ = τ1 τ2 = Sm(τ1, τ2). The
following two lemmas show that this expression is not just formal:

Lemma 1.61 [Eth00, Lemma A.4]
Let for n ∈ N, C(n) be the number of ordered binary rooted trees of order n. Then it
holds that the formal power series ∑n∈NC(n)γn has radius of convergence 1/4.
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1.9 The Evolution Equation for the Killed Mollified Super Brownian Motion

Proof
By considering subtrees τ1, τ2 of τ and the decomposition τ = τ1 τ2 , we get the relation

C(n) =
n−1∑
j=1

C(j)C(n− j), C(1) = 1.

Note that the series Cn := C(n + 1) for n ∈ N ∪ {0} are the Catalan numbers. Let
f : R → R be the formal power series given by f(γ) = ∑∞

n=1C(n)γn, f(0) = 0. The
formal generating function for the Catalan numbers, F (γ) = ∑∞

n=0Cnγ
n, has radius

of convergence 1/4 and is explicitly given by F (γ) = 2(1 +
√

1− 4γ)−1. It holds that
f(γ) = γF (γ) and therefore this function has radius of convergence 1/4 as well and is
given by f(γ) = 1/2(1−

√
1− 4γ), using the relation (1 +

√
1− 4γ)(1−

√
1− 4γ) = 4γ.

□

Lemma 1.62 [Eth00, Lemma 2.7]
Let for n,m ∈ N, t > 0, x ∈ [0, L]2, amn (t, x) := ∑

τ∈T ,|τ |=n τ(t, x). Assume that for
t > 0, sup0≤s≤t∥am1 (s, ·)∥L∞ <∞. Then it holds that the power series

γ 7→
∑
n∈N

amn (t, x)γn

has a non-trivial radius of convergence for fixed t, uniformly in x.

Proof
This proof is an adaptation of [Eth00, Lemma 2.7] to our setting, building on some more
careful estimates.
We have seen in Lemma 1.61 that the power series γ 7→ ∑∞

n=1C(n)γn has radius of
convergence 1/4. Therefore it suffices to show that there exists for any t > 0 some
Km(t) > 0 such that for any tree τ ∈ T and x ∈ [0, L]2, |τ(t, x)| = (−1)|τ |+1τ(t, x) ≤
max{t, 1}|τ |−1Km(t)|τ |. Let

Km(t) := max
{

sup
0≤s≤t

∥am1 (s, ·)∥L∞ , 1
}
.

We use induction over |τ | = n ∈ N. For n = 1, (t, x) = am1 (t, x) ≤ Km(t). Let now
τ ∈ T be such that |τ | = n + 1, n ∈ N, and τ = τ1 τ2 with τ1, τ2 ∈ T . We assume first
that |τ1| = 1 and |τ2| = n. Then if t > 0, using the monotonicity of s 7→ Km(s),

0 ≤ (−1)|τ |+1τ1 τ2(t, x) = 1
2

∫ t

0
Tmt−s((−1)|τ1|+1Tms ψ(−1)|τ2|+1τ2(s))(x)ds

≤ K |τ2|
m (t)

∫ t

0
Tmt ψ(x) max{s, 1}|τ2|−1ds ≤ K |τ2|

m (t) max{t, 1}|τ2|−1tKm(t)

≤ max{t, 1}|τ |−1K |τ |
m (t).
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Assume now that both |τ1|, |τ2| ≥ 2 and τ1 = τ3 τ4 with τ3, τ4 ∈ T . Then

0 ≤ (−1)|τ |+1τ1 τ2(t, x) = 1
2

∫ t

0
Tmt−s((−1)|τ1|+1τ1(s)(−1)|τ2|+1τ2(s))(x)ds

≤ K |τ2|
m (t) max{t, 1}|τ2|−1

∫ t

0
Tmt−s((−1)|τ1|+1τ1(s))(x)ds

= K |τ2|
m (t) max{t, 1}|τ2|−1

∫ t

0
Tmt−s

1
2

∫ s

0
Tmr ((−1)|τ3|+1τ3(s− r)(−1)|τ4|+1τ4(s− r))(x)drds

= K |τ2|
m (t) max{t, 1}|τ2|−1 1

2

∫ t

0

∫ s

0
Tmr+t−s((−1)|τ3|+1τ3(s− r)(−1)|τ4|+1τ4(s− r))(x)drds.

We substitute z = r + t− s and get by Fubini’s theorem,

1
2

∫ t

0

∫ s

0
Tmr+t−s((−1)|τ3|+1τ3(s− r)(−1)|τ4|+1τ4(s− r))(x)drds

= 1
2

∫ t

0

∫ t

t−s
Tmz ((−1)|τ3|+1τ3(t− z)(−1)|τ4|+1τ4(t− z))(x)dzds

= 1
2

∫ t

0
zTmz ((−1)|τ3|+1τ3(t− z)(−1)|τ4|+1τ4(t− z))(x)dz

≤ max{t, 1}(−1)|τ1|+1τ1(t, x) ≤ max{t, 1}|τ1|K |τ1|
m (t).

Therefore, 0 ≤ (−1)|τ |+1τ1 τ2(t, x) ≤ max{t, 1}|τ |−1K
|τ |
m (t). Together with the above this

yields the claim.
□

Explicitly we have am1 (t, x) = Tmt ψ(x). Hence the assumptions of Lemma 1.62 are
satisfied by the uniform continuity of this function.

Lemma 1.63
Let T > 0, ψ ∈ Im

PAM, ψ ≥ 0 and γ > 0 be sufficiently small. It holds that the mild
solution Umt (γψ), t ≤ T , is a strong solution ϕm ∈ C1([0, T ], C0((0, L)2)), ϕm(t) ∈
Dom(Hξm), 0 ≤ t ≤ T , to{

∂tϕm(t) = Hξmϕm(t)− 1
2ϕm(t)2 in (0, T )× (0, L)2,

ϕm(0) = γψ in [0, L]2, ϕm(t) = 0 on [0, T ]× ∂[0, L]2.

Proof
The semigroup for Hξm is strongly continuous by an application of [CZ95, Theorem
3.17, Proposition 3.23]. The claim now follows as in [Isc86, Theorem A]. Note that
Iscoe assumes that the semigroup is contractive. However, this may be dropped by the
localness of the problem. Also, since we have already constructed a mild solution, there
is no need for us to introduce, in their notation, the function g̃. Their ’mild equals
strong’ argument subsequently carries over to our solution.

□
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1.10 The Evolution Equation for the Killed Rough Super Brownian Motion

It follows immediately from the variation-of-constants representation that Um(ψ) ≤
Tm(ψ) for any ψ ∈ Dom(Hξm). The other natural bound should read that for any
ψ ∈ Dom(Hξm), ψ ≥ 0, 0 ≤ Um(ψ). This part of the proof carried out in [Isc86, Theorem
A] does, at least to our knowledge, not carry over, as it implicitly uses the contractivity
of the semigroup. However, we will encounter in Conjecture 1.65 an argument which
should yield the non-negativity at least for sufficiently small initial conditions.

1.10 The Evolution Equation for the Killed Rough Super Brownian
Motion

In this section we derive the solution theory for the ’Evolution Equation for the killed
rough Super Brownian Motion’ given by{

∂tϕ(t) = Hξϕ(t)− 1
2ϕ(t)2 in (0, T )× (0, L)2,

ϕ(0) = γψ in [0, L]2, ϕ(t) = 0 on [0, T ]× ∂[0, L]2,

with ψ ∈ Cα+2+δ
d , 0 < δ < 1 − (α + 2), ψ ≥ 0, ψ ̸= 0 and γ > 0 sufficiently small.

This construction, which we shall call the Paracontrolled Wild sum approach, is novel
and builds on [Eth00, Chapter 2.1]. Note that the same arguments carry over to the
mollified Evolution Equation as well and yield yet another construction in this case. We
define as in Section 1.9,

ϕ0(t) := Tt(γψ),
ϕn+1 := ϕ0(t) + S(ϕn, ϕn)(t), n ∈ N0,

where for f, g ∈ CtC(α+2)+
d ,

S(f, g)(t) := −1
2

∫ t

0
Tt−s(f(s)g(s))ds.

Lemma 1.64
Let T > 0, ψ ∈ Cα+2+δ

d , 0 < δ < 1−(α+2), ψ ≥ 0, ψ ̸= 0 and assume γ > 0 is sufficiently
small. Then there exists a variation-of-constants solution U(γψ) ∈ L

α+2+δ/8
d,T to the

Evolution Equation for the killed rough SBM given by

Ut(γψ) = Tt(γψ)− 1
2

∫ t

0
Tt−s(Us(γψ)2)ds.

In particular, it holds that U(γψ) ∈ C([0, T ], C(α+2)+
d ).

Proof
Let first ψ ∈ Cα+2+δ

d and v ∈ CTCα+2+δ
d for some 0 < δ < 1 − (α + 2). We define for

t ≥ 0,

V (t) :=
∫ t

0
Tt−sv(s)ds.
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1.10 The Evolution Equation for the Killed Rough Super Brownian Motion

Let C1, C2 > 0 be the constants appearing in Lemma 1.57. We can bound

∥T (ψ)∥
L

α+2+δ/2
d,T

≤ (C1 ∨ 1) exp(C2T )∥ψ∥Cα+2+δ
d

,

∥V ∥
CT Cα+2+δ/2

d

≤ sup
0≤t≤T

∫ t

0
C1 exp(C2(t− s))ds∥v∥CT Cα+2+δ

d
≤ C1T exp(C2T )∥v∥CT Cα+2+δ

d
.

We have that

V (t)− V (s) = (Tt−s − 1)
∫ s

0
Ts−rv(r)dr +

∫ t

s
Tt−rv(r)dr.

It follows for 0 ≤ s, t ≤ T ,

∥V (t)− V (s)∥L∞

≤ C1 exp(C2T )(t− s)(α+2+δ/4)/2
∥∥∥∥∫ s

0
Ts−rv(r)dr

∥∥∥∥
Cα+2+δ/2
d

+
∫ t

s
∥Tt−rv(r)∥Cα+2+δ/2

d

dr

≤ C1 exp(C2T )(t− s)(α+2+δ/4)/2
∫ s

0
C1 exp(C2(s− r))dr∥v∥CT Cα+2+δ

d

+ (t− s)C1 exp(C2T )∥v∥CT Cα+2+δ
d

≤ (C1 exp(C2T ))2T (t− s)(α+2+δ/4)/2∥v∥CT Cα+2+δ
d

+ (t− s)C1 exp(C2T )∥v∥CT Cα+2+δ
d

.

For the second term,

(t− s)C1 exp(C2T )∥v∥CT Cα+2+δ
d

≤ C1 exp(C2T )∥v∥CT Cα+2+δ
d

(t− s)(α+2+δ/4)/2(t− s)1−(α+2+δ/4)/2

≤ C1 exp(C2T )∥v∥CT Cα+2+δ
d

(t− s)(α+2+δ/4)/2(T ∨ 1).

This yields that V ∈ C(α+2+δ/4)/2
T L∞ with the bound

∥V ∥
L

α+2+δ/4
d,T

≤ max
{
C1 exp(C2T )(T ∨ 1), (C1 exp(C2T ))2T

}
∥v∥CT Cα+2+δ

d
.

We define the trees τ as in Section 1.9, now for the PAM instead of the mollified PAM.
Let T > 0 and 0 < δ < 1− (α+ 2). We define

A(T ) := max
{
C1 exp(C2T )(T ∨ 1), (C1 exp(C2T ))2T, 1

}
,

K(T ) := max
{

(C1 ∨ 1) exp(C2T )∥ψ∥Cα+2+δ
d

, 1
}
.

We claim that for any n ∈ N, |τ | = n, it holds that

∥τ∥
L

α+2+δ(5/4−
∑2n

k=1 1/2k)
d,T

≤ A(T )n−1K(T )n.
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1.10 The Evolution Equation for the Killed Rough Super Brownian Motion

Proof of the claim: We proceed by induction. Let n = 1, then

∥ ∥
L

α+2+δ/2
d,T

≤ K(T ).

For |τ | = n+ 1, we decompose τ = τ1 τ2 . Assume that without limitation of generality,
|τ1| ≤ |τ2| ≤ n. It follows by the above and inductively, that

∥τ1 τ2∥
L

α+2+δ(5/4−
∑2(n+1)

k=1 1/2k)
d,T

≤ 1
2A(T )∥τ1τ2∥

CT C
α+2+δ(5/4−

∑2n

k=1 1/2k)
d

≤ A(T )∥τ1∥
CT C

α+2+δ(5/4−
∑2|τ1|

k=1 1/2k)
d

∥τ2∥
CT C

α+2+δ(5/4−
∑2|τ2|

k=1 1/2k)
d

≤ A(T )|τ1|+|τ2|−1K(T )|τ1|+|τ2|.

This yields the claim.
Let an := ∑

τ∈T ,|τ |=n τ . It follows that∥∥∥∥∥
∞∑
n=1

γnan

∥∥∥∥∥
L

α+2+δ/4
d,T

≤
∞∑
n=1

γnC(n)A(T )nK(T )n. (13)

By Lemma 1.61 there exist for any T > 0, γ sufficiently small such that the sequence
(ϕn)n∈N is bounded in L

α+2+δ/4
d,T . By the compact embedding L

α+2+δ/4
d,T ⊂ L

α+2+δ/8
d,T ,

Lemma 1.33, it follows that there exists a converging subsequence, which converges to
some U(γψ) ∈ L

α+2+δ/8
d,T such that

Ut(γψ) = Tt(γψ)− 1
2

∫ t

0
Tt−s(Us(γψ)2)ds.

□
We also need to establish natural bounds for the solutions. This is the content of the
following conjecture.

Conjecture 1.65
Let T > 0, ψ ∈ Cα+2+δ

d , 0 < δ < 1− (α+ 2), ψ ≥ 0, ψ ̸= 0. Assume γ > 0 is sufficiently
small for U(γψ) ∈ L

α+2+δ/8
d,T given by

Ut(γψ) = Tt(γψ)− 1
2

∫ t

0
Tt−s(Us(γψ)2)ds

to exist by an application of Lemma 1.64. Then it holds that 0 ≤ Ut(γψ) ≤ Tt(γψ) for
any 0 ≤ t ≤ T .

Sketch of Proof
The inequality Ut(γψ) ≤ Tt(γψ) is immediate by the variation-of-constants representa-
tion.
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1.11 Approximation of the Rough Evolution Equation

For the lower bound assume that there exist some t, x such that Ut(γψ)(x) < 0. Then

Tt(γψ)(x) < 1
2

∫ t

0
Tt−s(Us(γψ)2)(x)ds.

Note that Us(γψ)/γ → Ts(ψ) as γ ↓ 0. Consequently the LHS is of order γ, while the
RHS is of order γ2. This yields a contradiction for γ sufficiently small. One needs to
make sure, though, that the sufficiency of γ does not depend on t, x. We give a formal
argument that this should be possible:
Assume that there exists some 0 ≤ t ≤ T minimal such that there is some x ∈ (0, L)2 with
Ut(γψ)(x) < 0. If t = 0, then U0(γψ)(x) = γψ(x) ≥ 0, which yields a contradiction.
Hence assume that t > 0. We get by using the minimality of t and the maximum
principle, Lemma 1.56,

Tt(γψ)(x) ≤ 1
2

∫ t

0
Tt−s(Us(γψ)2)(x)ds ≤ 1

2

∫ t

0
Tt−s(Us(γψ))(x)∥Us(γψ)∥L∞ds.

What is more,

Tt−sUs(γψ) = Tt(γψ)− 1
2

∫ s

0
Tt−r(Ur(γψ)2)dr.

Let s < t. By the minimality of t, it follows that 0 ≤ Us(γψ) ≤ Ts(γψ), hence
∥Us(γψ)∥L∞ ≤ ∥Ts(γψ)∥L∞ . Consequently,

Tt(γψ)(x) ≤ Tt(γψ)(x)
∫ t

0
∥Ts(γψ)∥L∞ds ≤ Tt(γψ)(x)∥γψ∥Cα+2

d
C1T exp(C2T ), (14)

where C1, C2 > 0 are as in Lemma 1.57. Note that γ > 0 sufficiently small in the
construction of Lemma 1.64 implies in particular, that

γ <
1

4A(T )K(T ) ≤
1

C1T exp(C2T )∥ψ∥Cα+2
d

.

Therefore, (14) is a contradiction.
The reason why the argument above is formal is that there may not be such a minimal t.
For example assume that for each t > 0, there is some xt ∈ (0, L)2 with Ut(γψ)(xt) < 0
and xt → x0 ∈ ∂[0, L]2 as t ↓ 0.

1.11 Approximation of the Rough Evolution Equation

Treating high order non-linearities is a major challenge in paracontrolled calculus. In
this section, we show that Um(γψ) → U(γψ) as m → ∞, implying that the solution
constructed in Section 1.10 is natural. To our knowledge, the approach used here is novel.
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1.11 Approximation of the Rough Evolution Equation

Lemma 1.66
Let 0 < ε < 1/4(−1 − α), T > 0. Let ψ,ψm ∈ C(α+2)+

d and let K(θ), A(θ), θ ∈
Xα+4ε
n , be the constants from Lemma 1.48. Then there exist some constants C > 0 and

K(θk,θ, T ) > 0, θk,θ ∈ Xα+4ε
n , depending only on appropriate norms of θk,θ, θk − θ,

with the following properties: If θk → θ in Xα+4ε
n as k → ∞, then K(θk,θ, T ) → 0.

Then,

∥Tψ − Tmψm∥CT Cα+2
d

≤ ∥ψ∥Cα+2
d

K(ξm, ξ, T ) exp(log(K(ξm, ξ, T ))(A(ξ) + 1)T )

+ ∥ψ − ψm∥Cα+2
d

(K(ξm) exp(log(K(ξm))(A(ξm) + 1)T ) + C).

Proof
We decompose

∥Tψ − Tmψm∥CT Cα+2
d
≤ ∥Tψ − Tmψ∥CT Cα+2

d
+ ∥Tmψ − Tmψm∥CT Cα+2

d

≤ ∥Tψ − Pψ − (Tmψ − Pψ)∥CT Cα+2
d

+ ∥Tmψ − Pψ − (Tmψm − Pψm)∥CT Cα+2
d

+ ∥Pψ − Pψm∥CT Cα+2
d

.

It follows by Lemma 1.53,

∥Tmψ − Pψ − (Tmψm − Pψm)∥CT Cα+2
d

≤ ∥ψ − ψm∥Cα+2
d

K(ξm) exp(log(K(ξm))(A(ξm) + 1)T ).

By Lemma 1.39 for some C > 0, ∥Pψ − Pψm∥CT Cα+2
d
≤ C∥ψ − ψm∥Cα+2

d
. We have

shown in Lemma 1.55, that the paracontrolled solution to the PAM admits the same
structure as in the mollified case. Therefore, by repeating the derivation of Lemma 1.57
and by using bilinearity, we get for some constants as in the claim,

∥(Tψ − Pψ)− (Tmψ − Pψ)∥CT Cα+2
d

≤ K(ξm, ξ, T ) exp(log(K(ξm, ξ, T ))(A(ξ) + 1)T )∥ψ∥Cα+2
d

.

□
We can now show that solutions to the mollified Evolution Equation converge to the
rough case.

Theorem 1.67
Let T > 0 and ψ ∈ C(α+2)+

d , ψ ≥ 0, ψ ̸= 0. Let γ be sufficiently small. Then it holds
that in CTCα+2

d ,

Um(γψ)→ U(γψ).
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1.11 Approximation of the Rough Evolution Equation

Proof
Let ψ ∈ Cα+2+δ

d , 0 < δ < 1− (α+ 2), be non-negative and not identically zero. We can
repeat the derivation of Section 1.10 in the mollified case by using the analogous bounds.
In particular, there exists a non-trivial lower bound for the sufficiency of γ. We define

A(T ) := max
{
C1 exp(C2T )(T ∨ 1), (C1 exp(C2T ))2T, 1

}
,

K(T ) := max
{

(C1 ∨ 1) exp(C2T )∥ψ∥Cα+2+δ
d

, 1
}
.

and

Am(T ) := max
{
Cm1 exp(Cm2 T )(T ∨ 1), (Cm1 exp(Cm2 T ))2T, 1

}
,

Km(T ) := max
{

(Cm1 ∨ 1) exp(Cm2 T )∥ψ∥Cα+2+δ
d

, 1
}
.

When building trees, we use the naming convention that the superscript of the subtrees
shall indicate whether we employ Sm or S:

Sm(τm1 , τm2 ) =:
τm

1 τm
2
, S(τ1, τ2) =: τ1 τ2

.

Then by the above, for any tree τ , ∥τ∥L α+2
d,T
≤ A(T )|τ |−1K(T )|τ | and for any tree τm,

∥τm∥L α+2
d,T
≤ Am(T )|τm|−1Km(T )|τm|. We define

A∗(T ) = max
{
A(T ), sup

m∈N
Am(T )

}
,

K∗(T ) = max
{
K(T ), sup

m∈N
Km(T )

}
,

C1
∗ (T ) = max

{
sup
m∈N

exp(log(K(ξm, ξ, T ))(A(ξ) + 1)T ), 1
}
,

C2
∗ (T ) = max

{
T (sup

m∈N
K(ξm) exp(log(K(ξm))(A(ξm) + 1)T ) + C), 1

}
.

Let τm be the tree obtained upon using the operator Sm and Tm instead of S and T .
We claim that

∥τ − τm∥CT Cα+2
d
≤ K(ξm, ξ, T )C1

∗ (T )(T ∨ 1)(2|τ | − 1)C2
∗ (T )|τ |−1A∗(T )|τ |−1K∗(T )|τ |.

We proceed inductively along the order n of the trees. First for n = 1, by Lemma 1.66,

∥Tψ − Tmψ∥CT Cα+2
d
≤ K(ξm, ξ, T ) exp(log(K(ξm, ξ, T ))(A(ξ) + 1)T )∥ψ∥Cα+2

d
.
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1.11 Approximation of the Rough Evolution Equation

Next, let τ1, τ2, τ
m
1 , τ

m
2 be trees such that |τ1|+ |τ2| = n+ 1. We get

∥τ1 τ2 −
τm

1 τm
2 ∥CT Cα+2

d
≤ 1

2 sup
0≤t≤T

∫ t

0
∥T (τ1(s)τ2(s))− Tm(τm1 (s)τm2 (s))∥Ct−sCα+2

d
ds

≤ 1
2(T ∨ 1)K(ξm, ξ, T ) exp(log(K(ξm, ξ, T ))(A(ξ) + 1)T )∥τ1τ2∥CT Cα+2

d

+ 1
2T (K(ξm) exp(log(K(ξm))(A(ξm) + 1)T ) + C)∥τ1τ2 − τm1 τm2 ∥CT Cα+2

d

≤ K(ξm, ξ, T )C1
∗ (T )(T ∨ 1)1

2∥τ1τ2∥CT Cα+2
d

+ C2
∗ (T )1

2∥τ1τ2 − τm1 τm2 ∥CT Cα+2
d

.

It holds that

∥τ1τ2∥CT Cα+2
d
≤ 2∥τ1∥CT Cα+2

d
∥τ2∥CT Cα+2

d
≤ 2A∗(T )|τ1|+|τ2|−2K∗(T )|τ1|+|τ2|

and

∥τ1τ2 − τm1 τm2 ∥CT Cα+2
d
≤ 2∥τ1∥CT Cα+2

d
∥τ2 − τm2 ∥CT Cα+2

d
+ 2∥τm2 ∥CT Cα+2

d
∥τ1 − τm1 ∥CT Cα+2

d

≤ 2A∗(T )|τ1|−1K∗(T )|τ1|∥τ2 − τm2 ∥CT Cα+2
d

+ 2A∗(T )|τm
2 |−1K∗(T )|τm

2 |∥τ1 − τm1 ∥CT Cα+2
d

.

Consequently, by the inductive hypothesis, using that C2
∗ (T ), A∗(T ) ≥ 1,

∥τ1 τ2 −
τm

1 τm
2 ∥CT Cα+2

d
≤ K(ξm, ξ, T )C1

∗ (T )(T ∨ 1)

× (2(|τ1|+ |τ2|)− 1)C2
∗ (T )|τ1|+|τ2|−1A∗(T )|τ1|+|τ2|−1K∗(T )|τ1|+|τ2|.

With this the claim is proved. Together with Lemma 1.61, this yields that∑
τ∈T
∥τ − τm∥CT Cα+2

d
γ|τ |

≤ K(ξm, ξ, T )C1
∗ (T )(T ∨ 1)

∞∑
n=1

γnC(n)(2n− 1)C2
∗ (T )n−1A∗(T )n−1K∗(T )n.

The sum on the RHS is finite for γ sufficiently small, hence for m→∞,

∥U(γψ)− Um(γψ)∥CT Cα+2
d
≤
∑
τ∈T
∥τ − τm∥CT Cα+2

d
γ|τ | → 0.

□
In particular, the same proof also yields the existence and convergence of solutions to

{
∂tϕ(t) = Hξϕ(t) + 1

2ϕ(t)2 in (0, T )× (0, L)2,

ϕ(0) = γψ in [0, L]2, ϕ(t) = 0 on [0, T ]× ∂[0, L]2.
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2 Construction of the Killed Mollified Super Brownian Motion

2 Construction of the Killed Mollified Super Brownian
Motion

In this section we construct the killed mollified Super Brownian Motion as a limit of
Branching Brownian Motions in a mollified white noise environment. The theory de-
veloped below is classical and the main arguments are already outlined in [Eth00, Section
1.5].

2.1 Killed Branching Brownian Motion in a Mollified White Noise
Environment

First we define our population model. Then we introduce the spatial movement of
particles and afterwards the branching and rescaling.

Definition 2.1
Let n ∈ N, L > 0 and δ ̸∈ R2. Let Bn be a variance-2/n-Brownian Motion in R2 started
in x ∈ (0, L)2. Let Tn be the first exit time of (0, L)2. We set

BL,n
t =

{
Bn
t if t < Tn,

δ if t ≥ Tn,

and call it a killed variance-2/n-Brownian Motion.

Some properties of the killed variance-2/n-Brownian Motion are listed in the following
lemma.

Lemma 2.2 [CZ95, Theorem 2.2, Proposition 2.3 and Proposition 3.23]
Let BL,n

t be a killed variance-2/n-Brownian Motion. Then it is a Feller- and strong
Feller process in (0, L)2. What is more, the transition semigroup is a strongly continuous,
positive, contraction semigroup on C0((0, L)2). On this space its generator, from here
on denoted by Gk

n, acts on Dom(Gk
n) = {f |f ∈ C0((0, L)2),∆f ∈ C0((0, L)2)} by Gk

nf =
1/n∆f .

Note that Dom(Gk
n) = Dom(Hξm). We need to consider an extension to the one-point

compactification of the domain, which will allow us to test our processes against constant
functions.

Lemma 2.3 [EK86, Proposition 4.2.3]
Let E be a locally compact, separable metric space. Let (T (t))t≥0 be a strongly continuous,
positive, contraction semigroup on C0(E) with generator G. Assume δ ̸∈ E and let the
set E∪̇{δ} be equipped with the topology of the one-point compactification. Define the
operator T δ(t) on C(E∪̇{δ}) for each t ≥ 0 by T δ(t)f = f(δ) + T (t)(f − f(δ)). Then
(T δ(t))t≥0 is a strongly continuous, positive, contraction semigroup on C(E∪̇{δ}) with
generator Gδ extending G such that the constant-1-function is in the bp-closure of Gδ. It
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2.1 Killed Branching Brownian Motion in a Mollified White Noise Environment

holds in this sense that Gδ1 = 0 and Gδf = Gf for any f ∈ C0(E), where we associate
to f the extension to E∪̇{δ} given by f(δ) = 0.

Remark 2.4
Using [EK86, Proposition 4.3.1], we will not distinguish between Gδ and its bp-closure
when considering martingale problems.

By applying the above theorem to Gk
n, we obtain an extension Ga

n such that Ga
n1 = 0.

We next define the environment our particles will live in.

Definition 2.5
Let n,m ∈ N. We define on (0, L)2,

ζ+1
n,m(x) = 1

2

(
1 + ξm(x)− cm

n

)
and ζ−1

n,m(x) = 1
2

(
1− ξm(x)− cm

n

)
.

We denote for n sufficiently large the associated probability generating function on (0, L)2

by Φn,m(s) = ζ+1
n,ms

2 + ζ−1
n,m.

Remark 2.6
For any m ∈ N, ξm is smooth, hence bounded in [0, L]2. Therefore we can choose n large
enough such that Φn,m is indeed a probability generating function.

Whenever we refer to ’n sufficiently large’, we associate some minimal N0 ∈ N such that
n ≥ N0 is required for the claim. This N0 may change during the course of this text.
This is not an issue, since we can always choose the largest such constant.
We can now define our underlying particle system.

Definition 2.7
We define E = {∑k

i=1 δxi |k ∈ N, xi ∈ (0, L)2 for any i ∈ {1, . . . , k}}.

Definition 2.8 [EK86, Section 9.4]
Let n,m ∈ N with n large enough according Definition 2.5. We define the martingale
problem for (Lyn,m, D(Lyn,m)) by:

D(Lyn,m) =
{

exp(⟨log(g), ·⟩)|g ∈ Dom(Ga
n), ∥g∥L∞ ≤ 1, inf

(0,L)2
g > 0

}
,

where on this set the generator is given by

Lyn,m exp(⟨log(g), ·⟩)(µ) =
〈
Ga
ng + Φn,m(g)− g

g
, µ

〉
exp(⟨log(g), µ⟩), µ ∈ E.
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2.2 Moment Bounds and Explicit Expressions for our Individual Based Model

Remark 2.9
In [EK86, Section 9.4] it is further imposed that ∥g∥L∞ < 1. This is because they treat
more general probability generating functions defined in terms of infinite power series.
Nevertheless, their assertions carry over to our setting with this less restrictive definition,
see also Remark 2.15.

A solution to this martingale problem exists and is unique:

Theorem 2.10 [EK86, Theorem 9.4.2]
The martingale problem for (Lyn,m, D(Lyn,m)) with starting point being any ν ∈ E has a
unique solution.

Remark 2.11
Following [EK86, pp. 400-402], the martingale problem describes a branching stopped
variance-2/n-Brownian Motion with death rate 1 and offspring distribution given by the
probability generating function. The probability of two offsprings is given by ζ+1

n,m(·),
while the probability of no offspring is ζ−1

n,m(·). See also the proof of Lemma 2.14 for a
different representation.
Note that there are only countably many particles alive at any time t ≥ 0, which implies
that null sets don’t accumulate over all particles.

Definition 2.12
Let n,m ∈ N with n sufficiently large according to Definition 2.5. Assume that nµn,m ∈ E
for any n ∈ N. We define Xn,m

t = 1/nY n,m
nt , where Y n,m is the solution to the martingale

problem for (Lyn,m, D(Lyn,m)) started in nµn,m. The generator of Xn,m will be denoted
by (Ln,m, D(Ln,m)).

With this notation, we can finally define (a posteriori) the probability space we are
working on:

Definition 2.13
Let for n,m ∈ N, n ≥ N0, (Ω,F , (Fn,mt )t≥0,P) be a complete filtered, right-continuous
probability space that supports Y n,m.

2.2 Moment Bounds and Explicit Expressions for our Individual Based
Model

In this section we show that our individual based models have moments of all orders
which are uniform over finite time intervals. This will be crucial for establishing relative
compactness, convergence and alternative martingale problems.
We first show a comparison principle which allows us to compare the Branching Brownian
Motion in an environment with a classical branching process.
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Lemma 2.14
Denote by 1/n∆ the generator of a two-dimensional variance-2/n-Brownian Motion on
R2 with domain Dom(∆) ⊂ C0(R2). Let Zn,m be the solution to the martingale prob-
lem for (Lzn,m, D(Lzn,m)), where D(Lzn,m) = {exp(⟨log(g), ·⟩)|g ∈ Dom(∆δ), infR2 g >
0, ∥g∥L∞ ≤ 1} and where on this set the generator is given by

Lzn,m exp(⟨log(g), ·⟩)(µ) =
〈

1/n∆δg + Φn,m(g)− g
g

, µ

〉
exp(⟨log(g), µ⟩),

with µ = ∑k
i=1 δxi, k ∈ N, xi ∈ R2, i ∈ {1, . . . , k} and Φn,m(x) defined for x ̸∈ [0, L]2 by

setting ξm(x) = cm. Assume that Zn,m0 is deterministic.
Let H i

t for i ∈ N denote the position at time t of the i-th particle to have appeared
in the population. More precisely: If there are k > 1 initial particles, then we assign
H1, . . . ,Hk arbitrarily to those. If the i-th particle branches and this is the j-th branching
event in the population, then we assign to its children arbitrarily the labelling i and j+k,
where k is the number of initial particles. If the i-th particle is dead or not born yet at
time t, we set H i

t = δ. We also define ti to be the birth time of the i-th particle, i.e.
ti = inf{t ≥ 0|H i

t ̸= δ}. Then Zn,m may be represented as

Zn,mt = Zn,m0 +
∫ t

0

∫
N

∫ 1

0
δHi

s−
1{

v≤
1/2(1+(ξm−cm)/n)(Hi

s−)
p

}Nb(dsdidv)

−
∫ t

0

∫
N

∫ 1

0
δHi

s−
1{

v≤
1/2(1−(ξm−cm)/n)(Hi

s−)
1−q

}Nd(dsdidv) (15)

+
∞∑
i=1

δ
B

i,Hi
t

t−ti

− δHi
ti
,

where

• p = supR21/2(1 + ξm−cm

n ) ∈ [1/2, 1) for n sufficiently large,

• q = infR21/2(1 + ξm−cm

n ) ∈ (0, 1/2] for n sufficiently large,

• Nb(dsdidv) is a Poisson random measure with intensity pds∑∞
k=1 δk(di)dv,

• Nd(dsdidv) is a Poisson random measure with intensity (1− q)ds∑∞
k=1 δk(di)dv,

• δx is the Dirac mass for x ∈ R2 and δδ = 0,

• B
i,Hi

t
t−ti , t ≥ ti, is a variance-2/n-Brownian Motion started in H i

ti. We set Bi,δ
t = δ

for t ∈ R.

Note that we can construct the random variables H i apart from the initial k ones con-
secutively from the Poisson Random Measures Nb, Nd and the associated indicator func-
tions.
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Proof
This proof was inspired by [FM04, Proposition 2.6] and [Cha06, Equation (15)] and
constitutes a partial extension.
Let g ∈ Dom(∆δ) be such that ∥g∥L∞ ≤ 1 and define fg(k, x1, . . . , xk) = ∏k

i=1 g(xi). The
process Zn,m may be equivalently characterized by the martingale problem for (A,D(A)),
where D(A) = {fg|g ∈ Dom(∆δ), ∥g∥L∞ ≤ 1} and

Afg(k, x1, . . . , xk) =
k∑
j=1

(
∆δ

n
g(xj) + Φn,m(g(xj))− g(xj)

)∏
i ̸=j

g(xi).

To see this, it suffices to note that ∏k
i=1 g(xi) = exp(⟨log(g), µ⟩) if µ = ∑k

i=1 δxi and to
reintroduce the factor g(xj) in the above as a productive 1, granted that infR2 g > 0.
We define for ν ∈ E, ν = ∑k

i=1 δxi , fg(ν) = fg(k, x1, . . . , xk). Let Wn,m be the process
defined in (15) with Wn,m

0 = ν and the associated H i, see also [FM04, Theorem 3.1]. Let
(t∗j )j∈{1,...,N−1} be the jump times of Wn,m with N − 1 the (random) number of jumps
and t∗0 = 0, t∗N = t. We get

fg(Wn,m
t )− fg(Wn,m

0 ) =
N∑
j=1

fg(Wn,m
t∗j

)− fg(Wn,m
t∗j−1

)

=
N∑
j=1

fg(Wn,m
t∗j

)− fg(Wn,m
t∗j − ) + fg(Wn,m

t∗j − )− fg(Wn,m
t∗j−1

)

=
∫ t

0

∫
N

∫ 1

0
(fg(Wn,m

s− + δHi
s−

)− fg(Wn,m
s− ))1{

v≤ 1/2(1+(ξm−cm)/n)
p

(Hi
s−)
}Nb(dsdidv)

+
∫ t

0

∫
N

∫ 1

0
(fg(Wn,m

s− − δHi
s−

)− fg(Wn,m
s− ))1{

v≤ 1/2(1−(ξm−cm)/n)
1−q

(Hi
s−)
}Nd(dsdidv)

+
N∑
j=1

fg(Wn,m
t∗j − )− fg(Wn,m

t∗j−1
).

Consequently,

E(fg(Wn,m
t ))− fg(Wn,m

0 )

=
∫ t

0
E
( ∞∑
j=1

1
2

(
1 + ξm − cm

n

)
(Hj

s−)1
Hj

s− ̸=δ

∏
i ̸=j

Hi
s− ̸=δ

g(H i
s−)(g(Hj

s−)2 − g(Hj
s−))

)
ds

+
∫ t

0
E
( ∞∑
j=1

1
2

(
1− ξm − cm

n

)
(Hj

s−)1
Hj

s− ̸=δ

∏
i ̸=j

Hi
s− ̸=δ

g(H i
s−)(1− g(Hj

s−))
)
ds

+ E

 N∑
j=1

fg(Wn,m
t∗j − )− fg(Wn,m

t∗j−1
)

 .
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We decompose the last term as

E

 N∑
j=1

fg(Wn,m
t∗j−

)− fg(Wn,m
t∗j−1

)

 = E (fg(Wn,m
t )− fg(Wn,m

0 )|N = 1)P(N = 1)

+ E

 N∑
j=1

fg(Wn,m
t∗j−

)− fg(Wn,m
t∗j−1

)
∣∣∣∣∣N ≥ 2

P(N ≥ 2).

However,

P(N ≥ 2) = P(N − 1 ≥ 1) ≤ E(N − 1) = t→ 0,

as t → 0. Consequently, the second term does not contribute to the generator. For the
first term,

P(N = 1) = P(N − 1 = 0) = exp(−t)→ 1

as t → 0. We see that E (fg(Wn,m
t )− fg(Wn,m

0 )|N = 1) /t converges as t → 0 to the
generator of a ⟨1,Wn,m

0 ⟩-dimensional variance-2/n-Brownian Motion. Hence all in all
we deduce that the generator A′ of Wn,m takes the form

A′fg(ν) =
k∑
j=1

(g(xj)2 − g(xj))
1
2

(
1 + ξm − cm

n

)
(xj)

∏
i ̸=j

g(xi)

+
k∑
j=1

(1− g(xj))
1
2

(
1− ξm − cm

n

)
(xj)

∏
i ̸=j

g(xi) +
k∑
j=1

∆δ

n
g(xj)

∏
i ̸=j

g(xi)

=
k∑
j=1

(
g(xj)2 1

2

(
1 + ξm − cm

n

)
(xj) + 1

2

(
1− ξm − cm

n

)
(xj)− g(xj)

)∏
i ̸=j

g(xi)

+
k∑
j=1

∆δ

n
g(xj)

∏
i ̸=j

g(xi)

= Afg(k, x1, . . . , xk).

All in all, we may represent Zn,m as in equation (15).
□

Remark 2.15
The martingale problem for Zn,m goes in fact slightly beyond the theory presented in
[EK86, Chapter 9.4], since the branching probabilities are no longer continuous. How-
ever, we can construct the process as in (15) and show that it is indeed a solution to the
martingale problem for (Lzn,m, D(Lzn,m)).

In the following, when comparing processes on (0, L)2∪̇{δ} and R2, 1 denotes the constant
one function in both spaces, including in particular δ in the first case, whereas 1(0,L)2 :
(0, L)2∪̇{δ} → {0, 1} denotes the function which is 1 in (0, L)2 and 0 on {δ}.
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We can now introduce some stochastic domination results which were already applied
in [Cha06].

Lemma 2.16 Cf. [Cha06, Theorem 2]
Let n,m ∈ N with n sufficiently large according to Definition 2.5 and nµn,m ∈ E. Let
Y n,m be the solution to the martingale problem for (Lyn,m, D(Lyn,m)). Extend ξm to R2 as
in Lemma 2.14 and let p = supR21/2(1 + ξm−cm

n ) ∈ [1/2, 1), q = infR21/2(1 + ξm−cm

n ) ∈
(0, 1/2] and Zn,m be as in Lemma 2.14. Let finally Y p be a branching Brownian Motion
as Zn,m but with branching mechanism Ψ(s) = ps2 + (1 − p). All processes start from
nµn,m, suitably extended. Then it holds that

⟨1(0,L)2 , Y n,m⟩ ≤ ⟨1, Zn,m⟩ ≤ ⟨1, Y p⟩ .

Proof
The first inequality is clear, since the only difference between Y n,m and Zn,m is that
Zn,m is defined on the full space. Note that by the definitions of p, q, 1− p ≤ 1− q. The
second inequality follows by using the explicit representation (15), bounding

1{
v≤

1/2(1+ ξm−cm
n )(Hi(Z

n,m
s− ))

p

} ≤ 1, 1{
v≤

1/2(1− ξm−cm
n )(Hi(Z

n,m
s− ))

1−q

} ≥ 1{
v≤ 1−p

1−q

},
as 1/2(1− (ξm − cm)/n) = 1− 1/2(1 + (ξm − cm)/n) ≥ 1− p, and then by subsequently
redefining the random variables H i.

□
We already get a very preliminary moment existence result:

Lemma 2.17
Let n,m ∈ N with n sufficiently large according to Definition 2.5 and let Y n,m be the
solution to the martingale problem for (Lyn,m, D(Lyn,m)) started in nµn,m ∈ E. Then it
holds that for any k ∈ N and t > 0,

E
(〈

1(0,L)2 , Y n,m
t

〉k)
<∞.

Proof
The process ⟨1(0,L)2 , Y n,m⟩ can be controlled by the process ⟨1, Y p⟩. By [AN72, Corollary
III.6.1] this process has moments of all orders for all positive fixed times, since for any
k ∈ N, 2kp <∞.

□
We will also need the following more refined bound.
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Lemma 2.18 [EK86, Lemma 9.4.1]
Let n,m ∈ N with n sufficiently large according to Definition 2.5 and let Y n,m be the
solution to the martingale problem for (Lyn,m, D(Lyn,m)) started in nµn,m ∈ E. Then

E(⟨1, Y n,m
t ⟩) ≤ ⟨1, nµn,m⟩ exp(t∥Φ′

n,m(1)− 1∥L∞)

and for any K,T > 0,

P
(

sup
t≤T
⟨1, Y n,m

t ⟩ exp(−t∥Φ′
n,m(1)− 1∥L∞) ≥ K

)
≤ ⟨1, nµn,m⟩

K
.

Proof
The second inequality differs slightly from the formulation in [EK86, Lemma 9.4.1],
hence we give a full proof.
Let λ > 0 and g = exp(−λ). Then by the martingale problem for (Lyn,m, D(Lyn,m)),

Mλ(t) = exp(−λ ⟨1, Y n,m
t ⟩)

−
∫ t

0
exp(−λ ⟨1, Y n,m

s ⟩) ⟨(Φn,m(exp(−λ))− exp(−λ)) exp(λ), Y n,m
s ⟩ ds,

is a martingale started in exp(−λ⟨1, nµn,m⟩) by the martingale problem for (Lyn,m, D(Lyn,m)).
Therefore,

E(exp(−λ ⟨1, Y n,m
t ⟩)) = exp(−λ ⟨1, nµn,m⟩)

+
∫ t

0
E(exp(−λ ⟨1, Y n,m

s ⟩) ⟨(Φn,m(exp(−λ))− exp(−λ)) exp(λ), Y n,m
s ⟩)ds

and

E(exp(−λ ⟨1, Y n,m
t ⟩)λ ⟨1, Y n,m

t ⟩) ≤ E(1− exp(−λ ⟨1, Y n,m
t ⟩))

= 1− exp(−λ ⟨1, nµn,m⟩)

+
∫ t

0
E(exp(−λ ⟨1, Y n,m

s ⟩) ⟨1− exp(λ)Φn,m(exp(−λ)), Y n,m
s ⟩)ds

≤ 1− exp(−λ ⟨1, nµn,m⟩) +
∫ t

0
E(exp(−λ ⟨1, Y n,m

s ⟩)⟨(Φ′
n,m(1)− 1)λ+ o(λ), Y n,m

s ⟩)ds

≤ 1− exp(−λ ⟨1, nµn,m⟩)

+
∫ t

0
∥(Φ′

n,m(1)− 1) + o(1)∥L∞E(exp(−λ ⟨1, Y n,m
s ⟩)λ ⟨1, Y n,m

s ⟩)ds.

The uniformity of the error term o(1) in x follows by its explicit Lagrange (mean-value)
representation and the boundedness of ξm on [0, L]2. By Gronwall’s inequality,

E(exp(−λ ⟨1, Y n,m
t ⟩) ⟨1, Y n,m

t ⟩)
≤ λ−1(1− exp(−λ ⟨1, nµn,m⟩)) exp(t∥(Φ′

n,m(1)− 1) + o(1)∥L∞).
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Letting λ→ 0 yields that

E(⟨1, Y n,m
t ⟩) ≤ ⟨1, nµn,m⟩ exp(t∥Φ′

n,m(1)− 1∥L∞).

Further

M(t) := lim
λ→0

λ−1(1−Mλ(t)) = ⟨1, Y n,m
t ⟩ −

∫ t

0
⟨Φ′

n,m(1)− 1, Y n,m
s ⟩ds.

The convergence holds in L1 by the dominated convergence theorem and hence M is a
martingale. By the discontinuous Itô’s product rule, cf. [Pro05, p. 83], we get

⟨1, Y n,m
t ⟩ exp(−t∥Φ′

n,m(1)− 1∥L∞)− ⟨1, nµn,m⟩

=
∫ t

0
exp(−s∥Φ′

n,m(1)− 1∥L∞)dM(s)

+
∫ t

0
exp(−s∥Φ′

n,m(1)− 1∥L∞)⟨Φ′
n,m(1)− 1, Y n,m

s ⟩ds

−
∫ t

0
⟨1, Y n,m

s ⟩ ∥Φ′
n,m(1)− 1∥L∞ exp(−s∥Φ′

n,m(1)− 1∥L∞)ds,

where the covariation vanishes, since t 7→ exp(−t∥Φ′
n,m(1)− 1∥L∞) is of finite variation.

Using that ⟨Φ′
n,m(1)− 1, Xn,m

s ⟩ ≤ ∥Φ′
n,m(1)− 1∥L∞ ⟨1, Xn,m

s ⟩, we get that

⟨1, Xn,m
t ⟩ exp(−t∥Φ′

n,m(1)− 1∥L∞)

is a supermartingale. Let K,T > 0. By [EK86, Proposition 2.2.16], for right-continuous
submartingales Z,

P
(

sup
t≤T
|Z(t)| ≥ K

)
≤ P

(
sup
t≤T

Z(t) ≥ K
)

+ P
(

inf
t≤T

Z(t) ≤ −K
)
≤ 2E(Z+(T ))− E(Z(0))

K
.

Applying this to the non-positive submartingale −⟨1, Y n,m
t ⟩ exp(−t∥Φ′

n,m(1) − 1∥L∞)
yields the inequality

P
(

sup
t≤T
⟨1, Y n,m

t ⟩ exp(−t∥Φ′
n,m(1)− 1∥L∞) ≥ K

)
≤ ⟨1, nµn,m⟩

K
.

□
In particular for our rescaled process Xn,m,

E(⟨1, Xn,m
t ⟩) = E

(〈
1, 1
n
Y n,m
nt

〉)
≤ 1
n
⟨1, nµn,m⟩ exp

(
−nt

∥∥∥∥ξm − cmn

∥∥∥∥
L∞

)
.

Therefore, if µn,m has bounded mass uniformly in n, for any T > 0, it follows that
supn≥N0 sup0≤t≤T E(⟨1, Xn,m

t ⟩) <∞. From Lemma 2.17 we also know that all moments
exist and Lemma 2.18 implies that the first moment is uniformly bounded. We need to
establish the uniform boundedness in time of the second, third and fourth moments as
well. This is the content of the next result.
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Lemma 2.19
Let n,m ∈ N with n sufficiently large according to Definition 2.5. Let Y n,m be the
solution to the martingale problem for (Lyn,m, D(Lyn,m)) started in ν ∈ E such that
⟨1(0,L)2 , ν⟩ = 1. Let T > 0. Then it holds that

sup
0≤s≤T

E
(〈

1(0,L)2 , Y n,m
s

〉4
)
<∞.

In particular for n sufficiently large, p = supR21/2(1 + ξm−cm

n ) ∈ [1/2, 1) and Y p as in
Lemma 2.16,

E(⟨1, Y p(t)⟩) = exp(λt), E(⟨1, Y p(t)⟩2) = exp(2λt)ϑ
λ

+ exp(λt)
(

1− ϑ

λ

)
,

E(⟨1, Y p(t)⟩3) = exp(3λt)3ϑ2

2λ2 + exp(2λt)
(
−3ϑ2

λ2 + 3ϑ
λ

)
+ exp(λt)

(
3ϑ2

2λ2 −
3ϑ
λ

+ 1
)
,

where λ = 2p− 1 and ϑ = 2p. Furthermore for the fourth moment,

E
(
⟨1, Y p(t)⟩4

)
= exp(4λt)3ϑ3

λ3 + exp(3λt)
(
−9ϑ3

λ3 + 9ϑ2

λ2

)

+ exp(2λt)
(

9ϑ3

λ3 −
18ϑ2

λ2 + 7ϑ
λ

)
+ exp(λt)

(
−3ϑ3

λ3 + 9ϑ2

λ2 −
7ϑ
λ

+ 1
)
.

Proof
It suffices by Lemma 2.16 to consider the process Y p with p = supR21/2(1 + (ξm −
cm)/n) ∈ [1/2, 1) for n sufficiently large. Let Ψ(s) = ps2 + (1− p), u(s) = Ψ(s)− s and
for s, t ≥ 0, F (s, t) = E(s⟨1,Y p(t)⟩). An application of the Kolmogorov backward equation
yields

∂tF (s, t) = u(F (s, t)), F (s, 0) = s,

see [AN72, pp. 102ff.] for more details. Then E(⟨1, Y p(t)⟩) = ∂s
∣∣
s↑1E(s⟨1,Y p(t)⟩). Ex-

changing differentiation and integration is valid here if 1/2 ≤ s ≤ 1. Indeed Y p(t) ≥ 0
and Y p(t)sY p(t) ≤ Y p(t), which is integrable by the proof of Lemma 2.17. The corres-
ponding validity assertions for higher moments are analogous and we will not consider
them explicitly on every occasion.
We define λ = u′(1) and ϑ = u′′(1). By the Kolmogorov backward equation,

∂t∂sF (s, t) = ∂s∂tF (s, t) = ∂su(F (s, t)) = u′(F (s, t))∂sF (s, t), ∂sF (s, 0) = 1.

Letting s ↑ 1 yields,

∂t∂sF (1, t) = λ∂sF (1, t), ∂sF (1, 0) = 1.
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So, E(⟨1, Y p(t)⟩) = ∂sF (1, t) = exp(λt). For the second moment, ∂2
s

∣∣
s↑1F (s, t) =

E(⟨1, Y p(t)⟩2)− E(⟨1, Y p(t)⟩). We compute

∂t∂
2
sF (s, t) = ∂2

s∂tF (s, t) = ∂s(u′(F (s, t))∂sF (s, t))
= u′′(F (s, t))(∂sF (s, t))2 + u′(F (s, t))∂2

sF (s, t)

and

∂2
sF (s, 0) = E(⟨1, Y p(t)⟩ (⟨1, Y p(t)⟩ − 1)s⟨1,Y p(t)⟩−2)

∣∣
t=0 = 0.

Letting s ↑ 1 yields

∂t∂
2
sF (1, t) = ϑ exp(2λt) + λ∂2

sF (1, t), ∂2
sF (1, 0) = 0.

Variation of constants gives that

∂2
sF (1, t) = exp(2λt)ϑ

λ
+ exp(λt)

(
−ϑ
λ

)
.

Hence

E(⟨1, Y p(t)⟩2) = exp(2λt)ϑ
λ

+ exp(λt)
(

1− ϑ

λ

)
.

For the third moment, ∂3
s

∣∣
s↑1F (s, t) = E(⟨1, Y p(t)⟩3)− 3E(⟨1, Y p(t)⟩2) + 2E(⟨1, Y p(t)⟩).

Again,

∂t∂
3
sF (s, t) = ∂s(u′′(F (s, t))(∂sF (s, t))2 + u′(F (s, t))∂2

sF (s, t))
= u′′(F (s, t))3∂sF (s, t)∂2

sF (s, t) + u′(F (s, t))∂3
sF (s, t)

and

∂3
sF (s, 0) = E(⟨1, Y p(t)⟩ (⟨1, Y p(t)⟩ − 1)(⟨1, Y p(t)⟩ − 2)s⟨1,Y p(t)⟩−3)

∣∣
t=0 = 0.

Letting s ↑ 1 yields

∂t∂
3
sF (1, t) = exp(3λt)3ϑ2

λ
+ exp(2λt)

(
−3ϑ2

λ

)
+ λ∂3

sF (1, t), ∂3
sF (1, 0) = 0.

Variation of constants gives that

∂3
sF (1, t) = exp(3λt)3ϑ2

2λ2 + exp(2λt)
(
−3ϑ2

λ2

)
+ exp(λt)3ϑ2

2λ2 .

Hence,

E(⟨1, Y p(t)⟩3) = exp(3λt)3ϑ2

2λ2 + exp(2λt)
(
−3ϑ2

λ2 + 3ϑ
λ

)
+ exp(λt)

(
3ϑ2

2λ2 −
3ϑ
λ

+ 1
)
.
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This implies in particular that the first three moments are integrable over finite time
horizons. We repeat the computations for the fourth moment. We have

∂4
sF (s, t) = E

(
⟨1, Y p(t)⟩ (⟨1, Y p(t)⟩ − 1)(⟨1, Y p(t)⟩ − 2)(⟨1, Y p(t)⟩ − 3)s⟨1,Y p(t)⟩−4

)
and

E(⟨1, Y p(t)⟩4) = ∂4
sF (1, t)

∣∣∣
s↑1

+ 6E(⟨1, Y p(t)⟩3)− 11E(⟨1, Y p(t)⟩2) + 6E(⟨1, Y p(t)⟩),

as well as ∂sF (s, 0) = 0. By the Kolmogorov backward equation,

∂t∂
4
sF (s, t) = 3u′′(F (s, t))(∂2

sF (s, t))2 + 4u′′(F (s, t))∂sF (s, t)∂3
sF (s, t)

+ u′(F (s, t))∂4
sF (s, t).

Letting s ↑ 1 yields

∂t∂
4
sF (1, t) = exp(4λt)9ϑ3

λ2 + exp(3λt)
(
−18ϑ3

λ2

)
+ exp(2λt)9ϑ3

λ2 + λ∂4
sF (1, t).

Variation of constants gives that

∂4
sF (1, t) = exp(4λt)3ϑ3

λ3 + exp(3λt)
(
−9ϑ3

λ3

)
+ exp(2λt)9ϑ3

λ3 + exp(λt)
(
−3ϑ3

λ3

)
.

Therefore,

E(⟨1, Y p(t)⟩4) = exp(4λt)3ϑ3

λ3 + exp(3λt)
(
−9ϑ3

λ3 + 9ϑ2

λ2

)

+ exp(2λt)
(

9ϑ3

λ3 −
18ϑ2

λ2 + 7ϑ
λ

)
+ exp(λt)

(
−3ϑ3

λ3 + 9ϑ2

λ2 −
7ϑ
λ

+ 1
)
.

□

Lemma 2.20
Let n,m ∈ N with n sufficiently large according to Definition 2.5. Let Xn,m be as
in Definition 2.12 with starting point µn,m where nµn,m ∈ E. Assume further that
supn≥N0⟨1(0,L)2 , µn,m⟩ <∞. Then for any T > 0,

sup
0≤s≤T

sup
n≥N0

E
(〈

1(0,L)2 , Xn,m
s

〉4
)
<∞.

Proof
We recall that Xn,m

t = 1/nY n,m
nt , where Y n,m

0 = nµn,m. We can choose p in Lemma 2.14
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for n ≥ N0 as pn = 1/2 +O(1/n). Let Y pn be as in Lemma 2.14 with Y pn
0 = nµn,m. Let

(Y pn,k)k∈{1,...,⟨1,nµn,m⟩} be i.i.d. branching processes with one initial particle each such
that Y pn

d= Y pn,1 + · · ·+ Y pn,⟨1,nµn,m⟩. Then by Lemma 2.19,

E
(〈
1(0,L)2 , Xn,m

s

〉)
= E

(〈
1(0,L)2 ,

1
n
Y n,m
ns

〉)
≤ 1
n
⟨1, nµn,m⟩E

(〈
1, Y pn,1

ns

〉)
= 1
n
⟨1, nµn,m⟩ exp(λnns),

where un(s) = pns
2 + 1− pn − s, λn = u′

n(1) = 2pn − 1 = O(1/n). By the independence
of Y pn,k and Y pn,l for k ̸= l,

E(⟨1, Y pn
ns ⟩

2) =
⟨1,nµn,m⟩∑
k=1

E
(〈

1, Y pn,k
ns

〉2
)

+
∑
l ̸=j

E
(〈

1, Y pn,l
ns

〉〈
1, Y pn,j

ns

〉)
= ⟨1, nµn,m⟩E

(〈
1, Y pn,1

ns

〉2
)

+ ⟨1, nµn,m⟩ (⟨1, nµn,m⟩ − 1)E
(〈

1, Y pn,1
ns

〉)2

and

E
(〈

1(0,L)2 , Xn,m
s

〉2
)
≤ 1
n2E

(
⟨1, Y pn

ns ⟩
2
)

= 1
n2 ⟨1, nµn,m⟩

(
exp(2λnns)

ϑn
λn

+ exp(λnns)
(

1− ϑn
λn

))
+ 1
n2 ⟨1, nµn,m⟩ (⟨1, nµn,m⟩ − 1) exp(2λnns),

where ϑn = u′′
n(1) = 2pn = 1 + O(1/n). Only the first summand necessitates some

discussion, since λn → 0 in the denominators. However,

ϑn
nλn

= 1 +O(1/n)
nO(1/n) = O(1) +O(1/n).

With that, uniformity in n and s ≤ T as well as integrability over finite time hori-
zons follow. For the fourth moment, we apply the multinomial theorem. We write for
k1, . . . , k⟨1,nµn,m⟩ ∈ N0 such that k1 + · · ·+ k⟨1,nµn,m⟩ = 4,(

4
k1, . . . , k⟨1,nµn,m⟩

)
= 4!
k1! · · · k⟨1,nµn,m⟩!

.
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Then it follows that

E
(
⟨1, Y pn(t)⟩4

)
=

∑
k1+···+k⟨1,nµn,m⟩=4

(
4

k1, . . . , k⟨1,nµn,m⟩

)
E

⟨1,nµn,m⟩∏
l=1

〈
1, Y pn,l

〉kl


= ⟨1, nµn,m⟩E

(〈
1, Y pn,1(t)

〉4
)

+ ⟨1, nµn,m⟩ (⟨1, nµn,m⟩ − 1)4E
(〈

1, Y pn,1(t)
〉3
)
E
(〈

1, Y pn,1(t)
〉)

+ 1/(2!) ⟨1, nµn,m⟩ (⟨1, nµn,m⟩ − 1)6E
(〈

1, Y pn,1
〉2
)2

+ 1/(4!) ⟨1, nµn,m⟩ (⟨1, nµn,m⟩ − 1)(⟨1, nµn,m⟩ − 2)(⟨1, nµn,m⟩ − 3)24E
(〈

1, Y pn,1
〉)4

,

where in the last step we used that Y pn,1, . . . , Y pn,⟨1,nµn,m⟩ are i.i.d.. Instead of writing
down an explicit bound for the fourth moment of Xn,m = 1/nY n,m

nt as above, let us give
the main scaling relations which lead to uniformity in n:
The time rescaling is harmless, since nt only appears in exponents together with λn =
O(1/n). The only dangerous terms are the λn appearing in the denominators. As above
we have for all summands a prefactor of n−4. For the fourth moment term of Y pn,1, the
denominators are of at most order 3. However the prefactor is of order 3 after cancelling
with the n from the initial distribution in ⟨1, nµn,m⟩. Consequently after cancellation
with the remaining prefactor, the denominators do not vanish as n → ∞. Similarly,
for the third moment term, the denominators are at most of order 2 with remaining
prefactor of order 2. For the second moment term, the denominators are at most of
order 2, due to taking the square of the second moment, with remaining prefactor also
of order 2. For the first moment term, the prefactor cancels exactly with the initial
condition and the expression for the first moment does not involve λn in a denominator.

□
From here on we will consider a substantial number of different but related martingales.
For the reader’s convenience and ease of reference, we have included as Section 5.2 an
Index of Martingales.

Lemma 2.21 Cf. [Eth00, Lemma 1.10]
Let n,m ∈ N with n sufficiently large according to Definition 2.5. Let ϕ ∈ C2

c ((0, L)2),
ϕ ≥ 0. Then

Lϕn,m(t) := ⟨ϕ,Xn,m
t ⟩ − ⟨ϕ,Xn,m

0 ⟩ −
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

is a martingale with predictable quadratic variation

⟨Lϕn,m⟩t =
∫ t

0

〈 2
n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
ds.
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Proof
The first part of this proof was inspired by [Eth00, Lemma 1.10]. Our derivation of the
predictable quadratic variation is novel and the result deviates from the one in [Eth00,
Lemma 1.10]. Nevertheless, it is consistent with the results of [PR19].
Let ϕ ∈ C2

c ((0, L)2), ϕ ≥ 0, γ > 0 and g = exp(−γϕ). Then g − 1 ∈ Cc((0, L)2) and
g ∈ Dom(Ga

n). We consider the martingale problem for Y n,m with such g and get for
t, u ≥ 0

0 = E
(

exp(−
〈
γϕ, Y n,m

t+u
〉
)− exp(−⟨γϕ, Y n,m

t ⟩)

−
∫ t+u

t

〈
−γ
n

∆ϕ+ γ2

n
∇ϕT∇ϕ+ Φn,m(exp(−γϕ))− exp(−γϕ)

exp(−γϕ) , Y n,m
s

〉

× exp(−⟨γϕ, Y n,m
s ⟩)ds

∣∣∣∣∣Fn,mt

)

We set

f(γ) := exp(−
〈
γϕ, Y n,m

t+u
〉
)− exp(−⟨γϕ, Y n,m

t ⟩)

−
∫ t+u

t

〈
−γ
n

∆ϕ+ γ2

n
∇ϕT∇ϕ+ Φn,m(exp(−γϕ))− exp(−γϕ)

exp(−γϕ) , Y n,m
s

〉
× exp(−⟨γϕ, Y n,m

s ⟩)ds

and

I1(s) =
〈
−γ
n

∆ϕ+ γ2

n
∇ϕT∇ϕ+ Φn,m(exp(−γϕ))− exp(−γϕ)

exp(−γϕ) , Y n,m
s

〉
.

We get

d

dγ
f(γ) = −

〈
ϕ, Y n,m

t+u
〉

exp(−
〈
γϕ, Y n,m

t+u
〉
) + ⟨ϕ, Y n,m

t ⟩ exp(−⟨γϕ, Y n,m
t ⟩)

−
∫ t+u

t

〈
− 1
n

∆ϕ+ 2γ
n
∇ϕT∇ϕ+

[(
Φ′
n,m(exp(−γϕ)) exp(−2γϕ)(−ϕ) + exp(−2γϕ)ϕ

)
−
(
Φn,m(exp(−γϕ))− exp(−γϕ)

)
exp(−γϕ)(−ϕ)

]
/(exp(−2γϕ)), Y n,m

s

〉
× exp(−⟨γϕ, Y n,m

s ⟩) + I1(s) exp(−⟨γϕ, Y n,m
s ⟩)(−⟨ϕ, Y n,m

s ⟩)ds.

We denote

I2(s) :=
〈
− 1
n

∆ϕ+ 2γ
n
∇ϕT∇ϕ+

[(
Φ′
n,m(exp(−γϕ)) exp(−2γϕ)(−ϕ) + exp(−2γϕ)ϕ

)
−
(
Φn,m(exp(−γϕ))− exp(−γϕ)

)
exp(−γϕ)(−ϕ)

]
/(exp(−2γϕ)), Y n,m

s

〉
.
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Note that d
dγ I1(s) = I2(s). Plugging in γ = 0,

d

dγ
f(0) = −

〈
ϕ, Y n,m

t+u
〉

+ ⟨ϕ, Y n,m
t ⟩ −

∫ t+u

t

〈
− 1
n

∆ϕ+ (1− Φ′
n,m(1))ϕ, Y n,m

s

〉
ds,

and we note that Φ′
n,m(1) = (1+(ξm−cm)/n). Using Lemma 2.19 we can find a suitable

majorant by factoring out all deterministic functions via sup0≤γ≤1∥·∥L∞ and bounding
exponentials with non-positive exponents by 1. Hence we can exchange differentiation
and integration, which implies

0 = E
(
−
〈
ϕ, Y n,m

t+u
〉

+ ⟨ϕ, Y n,m
t ⟩ −

∫ t+u

t

〈
− 1
n

(∆ + ξm − cm)ϕ, Y n,m
s

〉
ds

∣∣∣∣∣Fn,mt

)
.

This is the martingale property for Y n,m. The martingale property for Xn,m
t = 1/nY n,m

nt

follows by considering ϕ/n and an application of the substitution formula.
In order to find an expression for ⟨Lϕn,m⟩t, we decompose the term (Lϕn,m(t))2 and identify
martingales and non-decreasing, predictable processes of finite variation. In order to find
another martingale, we repeat the procedure above. We have

d2

dγ2 f(γ) =
〈
ϕ, Y n,m

t+u
〉2 exp(−

〈
γϕ, Y n,m

t+u
〉
)− ⟨ϕ, Y n,m

t ⟩2 exp(−⟨γϕ, Y n,m
t ⟩)

−
∫ t+u

t

〈 2
n
∇ϕT∇ϕ+

[(
Φ′′
n,m(exp(−γϕ)) exp(−3γϕ)ϕ2 + Φ′

n,m(exp(−γϕ)) exp(−2γϕ)2ϕ2

+ exp(−2γϕ)(−2ϕ)(ϕ)− Φ′
n,m(exp(−γϕ)) exp(−2γϕ)ϕ2 − Φn,m(exp(−γϕ)) exp(−γϕ)ϕ2

+ exp(−2γϕ)2ϕ2
)

exp(−2γϕ)−
(
Φ′
n,m(exp(−γϕ)) exp(−2γϕ)(−ϕ) + exp(−2γϕ)ϕ

− (Φn,m(exp(−γϕ))− exp(−γϕ)) exp(−γϕ)(−ϕ)
)

exp(−2γϕ)(−2ϕ)
]
/ exp(−4γϕ), Y n,m

s

〉
× exp(−⟨γϕ, Y n,m

s ⟩) + I2(s) exp(−⟨γϕ, Y n,m
s ⟩)(−⟨ϕ, Y n,m

s ⟩)
+ I2(s) exp(−⟨γϕ, Y n,m

s ⟩)(−⟨ϕ, Y n,m
s ⟩) + I1(s) exp(−⟨γϕ, Y n,m

s ⟩) ⟨ϕ, Y n,m
s ⟩2 ds.

Now
d2

dγ2 f(0) =
〈
ϕ, Y n,m

t+u
〉2 − ⟨ϕ, Y n,m

t ⟩2

−
∫ t+u

t

〈 2
n
∇ϕT∇ϕ+ ϕ2, Y n,m

s

〉
+
〈 2
n

(∆ + ξm − cm)ϕ, Y n,m
s

〉
⟨ϕ, Y n,m

s ⟩ ds.

As above, this yields that

M1,ϕ
n,m(t) := ⟨ϕ,Xn,m

t ⟩2 − ⟨ϕ,Xn,m
0 ⟩2

−
∫ t

0

〈 2
n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
+ 2 ⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩ ds

is a martingale. Another martingale is given by

M2,ϕ
n,m(t) :=

(
⟨ϕ,Xn,m

t ⟩ −
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

)
⟨ϕ,Xn,m

0 ⟩ .
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We need to find one last local martingale.
Claim: The process

M3,ϕ
n,m(t) := 2

∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩ ds+
(∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

)2

− 2 ⟨ϕ,Xn,m
t ⟩

∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

is a local martingale.
Proof of the claim: By Fubini’s theorem,∫ t

0
⟨Hξmϕ,X

n,m
s ⟩

∫ t

s
⟨Hξmϕ,X

n,m
r ⟩ drds

=
∫ t

0

∫ t

0
1[0,t](s)1[s,t](r) ⟨Hξmϕ,X

n,m
s ⟩ ⟨Hξmϕ,X

n,m
r ⟩ drds

=
∫ t

0

∫ r

0
⟨Hξmϕ,X

n,m
s ⟩ ds ⟨Hξmϕ,X

n,m
r ⟩ dr

=
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩

∫ s

0
⟨Hξmϕ,X

n,m
r ⟩ drds,

where in the last line we merely renamed some variables. Therefore by adding the first
and the last line of the above,(∫ t

0
⟨Hξmϕ,X

n,m
r ⟩ ds

)2
= 2

∫ t

0
⟨Hξmϕ,X

n,m
s ⟩

∫ t

s
⟨Hξmϕ,X

n,m
r ⟩ drds.

We now write

2
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩

∫ t

s
⟨Hξmϕ,X

n,m
r ⟩ drds

= 2
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ (⟨ϕ,Xn,m

t ⟩ − ⟨ϕ,Xn,m
s ⟩ − Lϕn,m(t) + Lϕn,m(s))ds

= 2 ⟨ϕ,Xn,m
t ⟩

∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds− 2

∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩ ds

− 2Lϕn,m(t)
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds+ 2

∫ t

0
Lϕn,m(s) ⟨Hξmϕ,X

n,m
s ⟩ ds.

This yields

M3,ϕ
n,m(t) = −2Lϕn,m(t)

∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds+ 2

∫ t

0
Lϕn,m(s) ⟨Hξmϕ,X

n,m
s ⟩ ds.

By applying the discontinuous Itô product rule, we get

Lϕn,m(t)
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

=
∫ t

0

∫ s

0
⟨Hξmϕ,X

n,m
r ⟩ drdLϕn,m(s) +

∫ t

0
Lϕn,m(s) ⟨Hξmϕ,X

n,m
s ⟩ ds

+ [Lϕn,m,
∫ ·

0
⟨Hξmϕ,X

n,m
s ⟩ ds]t.
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The covariation vanishes, since the Lebesgue integral term is absolutely continuous.
Therefore,

M3,ϕ
n,m(t) = −2

∫ t

0

∫ s

0
⟨Hξmϕ,X

n,m
r ⟩ drdLϕn,m(s),

which is a local martingale. This proves the claim.
We now get

(Lϕn,m(t))2 = ⟨ϕ,Xn,m
t ⟩2 + ⟨ϕ,Xn,m

0 ⟩2 +
(∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

)2
− 2 ⟨ϕ,Xn,m

t ⟩ ⟨ϕ,Xn,m
0 ⟩

+ 2 ⟨ϕ,Xn,m
0 ⟩

∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds− 2 ⟨ϕ,Xn,m

t ⟩
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

= M1,ϕ
n,m(t) + 2 ⟨ϕ,Xn,m

0 ⟩2 +
∫ t

0

〈 2
n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
ds

+ 2
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩ ds+
(∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

)2

− 2M2,ϕ
n,m(t)− 2 ⟨ϕ,Xn,m

t ⟩
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

= M1,ϕ
n,m(t)− 2M2,ϕ

n,m(t) +M3,ϕ
n,m(t) + 2 ⟨ϕ,Xn,m

0 ⟩2

+
∫ t

0

〈 2
n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
ds.

This yields that indeed

⟨Lϕn,m⟩t =
∫ t

0

〈 2
n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
ds.

□

2.3 The Superprocess Limit: Killed Mollified Super Brownian Motion

We show in this section that Xn,m converges for fixed m as n → ∞ to an intermediate
process which can be seen as a killed Super Brownian Motion in a mollified white noise
environment (killed mollified SBM). In fact, the techniques in this section are standard
and do not require any knowledge of Paracontrolled Calculus.
The following theorem asserts that for the construction of limiting processes it is sufficient
to prove convergence of the generators, relative compactness of the prelimiting processes
and uniqueness of the limit.

Theorem 2.22 Cf. [EK86, Theorem 4.8.10]
Let (E, r) be a complete and separable metric space and M(E) be the set of Borel meas-
urable functions. Let A ⊂ M(E), µ ∈ E and L : A → M(E) be a linear operator.
Suppose that the D([0,∞), E)-martingale problem for (L,A) with starting point µ has
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at most one solution. Let (Ω,F ,P) be a complete probability space. Let (Fnt )t≥0 be a
complete filtration for any n ∈ N. Suppose (Znt )t≥0 is an (Fnt )t≥0-adapted process with
sample paths in D([0,∞), E). Assume further that limn→∞ P ◦ (Zn0 )−1 = δµ weakly. As-
sume that every subsequence of (Zn)n∈N has a subsubsequence (Z ′

l)l∈N which converges
weakly to some limit point Z ′ such that for any f ∈ A and t, s ≥ 0,

f(Z ′
l(t+ s))− f(Z ′

l(t))−
∫ t+s

t
Lf(Z ′

l(u))du, l ∈ N,

f(Z ′(t+ s))− f(Z ′(t))−
∫ t+s

t
Lf(Z ′(u))du, (16)

are L1(P)-integrable. For the sake of notation we denote the underlying probability meas-
ure associated to Z ′ again by P. Assume further, that

lim
l→∞

E
((

f(Z ′
l(t+ s))− f(Z ′

l(t))−
∫ t+s

t
Lf(Z ′

l(u))du
) k∏
i=1

hi(Z ′
l(ti))

)

= E
((

f(Z ′(t+ s))− f(Z ′(t))−
∫ t+s

t
Lf(Z ′(u))du

) k∏
i=1

hi(Z ′(ti))
)
, (17)

for any k ≥ 0, 0 ≤ t1 < t2 < · · · < tk ≤ t < t+ s and h1, . . . , hk ∈ Cb(E), and that

lim
l→∞

E
((

f(Z ′
l(t+ s))− f(Z ′

l(t))−
∫ t+s

t
Lf(Z ′

l(u))du
) k∏
i=1

hi(Z ′
l(ti))

)
= 0. (18)

Then there exists a càdlàg process Z, adapted to the natural filtration, which solves
the martingale problem for (L,A) with initial distribution µ. Moreover, Zn → Z in
distribution in D([0,∞), E).

Remark 2.23
Note that the existence of a converging subsubsequence for any subsequence is given if
(Law(Zn))n∈N is relatively compact in M1(D([0,∞), E)). The point is that we have to
find one, which also satisfies (16), (17) and (18).

Proof of Theorem 2.22
Take by the relative compactness of (Zn)n∈N, Z ′ to be a weak limit point of a converging
subsubsequence (Z ′

l)l∈N as in the claim. It follows by (17) and (18), that

E
((

f(Z ′(t+ s))− f(Z ′(t))−
∫ t+s

t
Lf(Z ′(u))du

) k∏
i=1

hi(Z ′(ti))
)

= 0. (19)

This implies by a Dynkin class argument, that Z ′ indeed solves the martingale problem
for (L,A) starting in µ. The uniqueness of limit points then also implies the weak
convergence of (Zn)n∈N itself.

□
Let us fix a state space: The space M((0, L)2) of Radon measures on (0, L)2 equipped
with the vague topology in duality with Cc((0, L)2)-functions:
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Definition 2.24
We denote the set of Radon measures on (0, L)2 by M((0, L)2) and the subset of finite
Radon measures on (0, L)2 by MF ((0, L)2).

Since (0, L)2 is Polish, we may define M((0, L)2) as the space of locally finite Borel
measures, see [Bog07, Theorem 7.1.7].

Theorem 2.25 [Kal83, 15.7.7]
The set of Radon measures on (0, L)2, M((0, L)2), equipped with the vague topology in
duality with Cc((0, L)2)-functions, is Polish. In fact, one metrization of the Cc-vague
topology is given by

ρ(µ, µ′) =
∞∑
k=1

2−k(1− exp(−
∣∣⟨fk, µ⟩ − 〈fk, µ′〉∣∣))

with (fk)k∈N some particular sequence of functions such that fk ∈ C∞
c ((0, L)2) and

0 ≤ fk ≤ 1 for any k ∈ N. One such sequence of functions may be constructed as
approximations of the indicator functions 1B with B a finite union of balls B(p, q), p ∈
(0, L)2 ∩ (Q+ ×Q+), q ∈ Q+, B(p, q) ⊂ (0, L)2, Dist(B(p, q), ∂(0, L)2) > 0.

Proof
The basic claim has been proved in [Kal83, 15.7.7], we merely point out some adjust-
ments.
Denote by fn ∈ Cc((0, L)2), 0 ≤ fn ≤ 1, n ∈ N, the functions considered in [Kal83,
15.7.7]. Note that fn ↑ 1B as n → ∞ for some finite union of balls B. Let ψ ∈
C∞
c ((0, L)2), ψ ≥ 0,

∫
(0,L)2 ψ(x)dx = 1 and define ψk = k2ψ(kx). We have for some

fixed n and k ∈ N sufficiently large, Supp(ψk ∗ fn) ⊂ Supp(fn) + 1/kSupp(ψ) ⊂ (0, L)2

and ∥ψk ∗ fn∥L∞ ≤ ∥ψk∥L1∥fn∥L∞ ≤ 1. It follows that ψk ∗ fn → fn uniformly as
k → ∞. Consequently we can find some sequence ψk(n) ∗ fn, n ∈ N, which converges
pointwise and uniformly bounded to 1B. The rest of claim follows as in [Kal83, 15.7.7].

□
The reason why we need to use the vague topology is that individuals are killed at the
boundary. Next, we note that the space of càdlàg functions taking values in M((0, L)2)
is Polish as well.

Lemma 2.26
The space D([0,∞),M((0, L)2)) equipped with the Skorokhod topology is Polish.

Proof
The assertion is a consequence of Theorem 2.25 and [EK86, Theorem 3.5.6].

□
We will need to quantify the convergence of such objects. For this, the following will be
helpful:
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Lemma 2.27 [EK86, Proposition 3.5.3, Remark 3.5.4]
Let (E, r) be a metric space. Let (xn)n∈N and x be such that xn ∈ D([0,∞), E) and
x ∈ D([0,∞), E). Then the following are equivalent:

1. It holds that xn → x in D([0,∞), E).

2. For any T > 0 there exists some (λn)n∈N with each λn : [0,∞) → [0,∞) strictly
increasing and surjective such that

lim
n→∞

sup
0≤t≤λn(T )

|λ−1
n (t)− t| = 0 and lim

n→∞
sup

0≤t≤λn(T )
r(xn(λ−1

n (t)), x(t)) = 0.

3. For any T > 0 there exists some (λn)n∈N with each λn : [0,∞) → [0,∞) strictly
increasing and surjective such that

lim
n→∞

sup
0≤t≤T

|λn(t)− t| = 0 and lim
n→∞

sup
0≤t≤T

r(xn(t), x(λn(t))) = 0.

Theorem 2.28
Let (E, r) be a separable metric space. Let (Xn)n∈N and X be processes in D([0,∞), E).
Assume Xn → X weakly and that X is a.s. continuous. Let (Zn)n∈N, Z be their
counterparts from the Skorokhod representation theorem, cf. [EK86, Theorem 3.1.8].
Then a.s. Zn(t)→ Z(t) for any t > 0.

Proof
The important fact is that we need to make sure that the exceptional null set does not
depend on the choice of t.
By choosing T = t in Lemma 2.27, it follows a.s.: For any t ≥ 0, there exist some
λn : [0,∞)→ [0,∞) strictly increasing and surjective, such that r(Zn(t), Z(λn(t)))→ 0
and λn(t)→ t. By the a.s. continuity of Z it follows that, r(Z(λn(t)), Z(t))→ 0 for any
t ≥ 0.

□
Prokhorov’s theorem subsequently also implies that the notions of relative compactness
and tightness are equivalent for distributions on D([0,∞),M((0, L)2)), hence we will use
them interchangeably.
Our first goal is to prove tightness. For this we need a number of preliminary results.

Theorem 2.29 (Jakubowski’s criterion)[DMS93, Theorem 3.6.4]
Let (E, r) be a Polish space and (Zn)n∈N be a family of processes in the Skorokhod space
D([0,∞), E). Assume that the compact containment condition holds, i.e. for any η > 0
and T > 0 there exists a compact set Γη,T ⊂ E such that :

inf
n∈N

P(Znt ∈ Γη,T for any t ∈ [0, T ]) ≥ 1− η.

Let H ⊂ C(E) be separating points in E and assume it is closed under addition. Then
(Zn)n∈N is relatively compact if and only if (f ◦ Zn)n∈N is relatively compact for any
f ∈ H.
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The following result answers some further relevant questions regarding the topology of
the state space:

Lemma 2.30 [Kal83, 15.7.5]
We equip M((0, L)2) with the Cc-vague topology. Let K > 0, then it holds that the set
B = {µ ∈M((0, L)2)|⟨1(0,L)2 , µ⟩ < K} is Cc-vaguely relatively compact.

The following will be useful for verifying relative compactness of the evaluated processes:

Theorem 2.31 [EK86, Theorem 3.8.6, Theorem 3.8.8]
Let (E, r) be a complete and separable metric space and q = r ∧ 1. Let (Zn)n∈N be a
family of processes in D([0,∞), E). Assume that for every η > 0 and t > 0 rational
there exists some Γtη ⊂ E compact such that

inf
n∈N

P(Znt ∈ Γtη) ≥ 1− η. (20)

Assume also that for any T > 0 there exists some β > 1, C > 0, θ > 1 such that

lim
δ→0

sup
n∈N

E(qβ(Znδ , Zn0 )) = 0

and for any n ∈ N, 0 ≤ t ≤ T + 1, 0 ≤ u ≤ t ∧ 1,

E(qβ/2(Znt+u, Znt )qβ/2(Znt , Znt−u)) ≤ Cuθ.

Then (Zn)n∈N is relatively compact.

Remark 2.32
Note that the compact containment condition implies (20). The strength of this result
lies in the fact that it does not rely on uniform in time estimates. This fact will play an
important role in Lemma 3.6.
The restriction u ≤ 1 is not present in the formulation of [EK86, Theorem 3.8.8] but
may be assumed as the proof makes no use of u > 1.

We can now show the tightness of the processes (Xn,m)n∈N.

Lemma 2.33
Assume that nµn,m ∈ E, such that supn≥N0⟨1(0,L)2 , µn,m⟩ <∞. Then it follows that the
processes (Xn,m)n≥N0 started in (µn,m)n≥N0 are tight in D([0,∞),M((0, L)2)).

Proof
Let η, T > 0. For K > 0 we define the set ΓK = {µ ∈ M((0, L)2)|⟨1(0,L)2 , µ⟩ < K},
which is vaguely relatively compact by Lemma 2.30. It is

P(Xn,m
t ∈ ΓK for any t ∈ [0, T ]) = P(⟨1(0,L)2 , Xn,m

t ⟩ < K for any t ∈ [0, T ]).
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For the complementary event, as a consequence of Lemma 2.18,

P
(

sup
0≤t≤T

〈
1(0,L)2 , Xn,m

t

〉
≥ K

)
≤ P

(
sup

0≤t≤T
⟨1, Xn,m

t ⟩ ≥ K
)

≤ P
(

sup
0≤t≤T

⟨1, Xn,m
t ⟩ exp(−nt∥Φ′

n,m(1)− 1∥L∞) ≥ K inf
0≤s≤T

exp(−ns∥Φ′
n,m(1)− 1∥L∞)

)

≤ ⟨1, nµn,m⟩
nK inf0≤s≤T exp(−ns∥Φ′

n,m(1)− 1∥L∞)) .

As Φ′
n,m(1) − 1 = (ξm − cm)/n, this yields an estimate which is uniform in n ≥ N0.

Choosing K large enough depending on η and T yields uniformly in n,

P(Xn,m
t ∈ ΓK for any t ∈ [0, T ]) ≥ 1− η,

which implies that the compact containment condition is satisfied. By Jakubowski’s
criterion, Theorem 2.29, it is sufficient to establish tightness of the evaluated processes
(⟨ϕ,Xn,m⟩)n≥N0 for ϕ ∈ C2

c ((0, L)2), ϕ ≥ 0.
We apply the tightness criterion of Theorem 2.31. We compute for 0 < δ < 1, using the
martingales M1,ϕ

n,m and Lϕn,m of the proof of Lemma 2.21,

E(
(〈
ϕ,Xn,m

δ

〉
− ⟨ϕ,Xn,m

0 ⟩
)2)

= E(
〈
ϕ,Xn,m

δ

〉2 − 2
〈
ϕ,Xn,m

δ

〉
⟨ϕ,Xn,m

0 ⟩+ ⟨ϕ,Xn,m
0 ⟩2)

= ⟨ϕ, µn,m⟩2 +
∫ δ

0
E
(〈 2

n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
+ 2 ⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩
)
ds

+ ⟨ϕ, µn,m⟩2 − 2 ⟨ϕ, µn,m⟩
(
⟨ϕ, µn,m⟩+

∫ δ

0
E(⟨Hξmϕ,X

n,m
s ⟩)ds

)
.

Note that in Theorem 2.31 we can control higher exponents of q by lower ones since
q ≤ 1. Using that the first two moments are bounded uniformly in n and s ≤ 1, we get
that this term is of order δ.
More generally, we get for t, u ≥ 0,

E(
(〈
ϕ,Xn,m

t+u
〉
− ⟨ϕ,Xn,m

t ⟩
)2 |Fn,mt )

= E
(∫ t+u

t

〈 2
n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
+ 2 ⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩ ds
∣∣∣Fn,mt

)
− 2E

(∫ t+u

t
⟨Hξmϕ,X

n,m
s ⟩ ds ⟨ϕ,Xn,m

t ⟩
∣∣∣Fn,mt

)
. (21)
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With this we can compute with Hölder’s inequality,

E
((∣∣〈ϕ,Xn,m

t+u
〉
− ⟨ϕ,Xn,m

t ⟩
∣∣ ∧ 1

)2 (∣∣⟨ϕ,Xn,m
t ⟩ −

〈
ϕ,Xn,m

t−u
〉∣∣ ∧ 1

)2)
≤ E

(
E
((〈

ϕ,Xn,m
t+u

〉
− ⟨ϕ,Xn,m

t ⟩
)2 ∣∣∣Fn,mt

) ∣∣⟨ϕ,Xn,m
t ⟩ −

〈
ϕ,Xn,m

t−u
〉∣∣)

≲ E
(
E
(∫ t+u

t

〈 2
n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
+ 2 ⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩ ds
∣∣∣Fn,mt

)2)1/2

× E
((
⟨ϕ,Xn,m

t ⟩ −
〈
ϕ,Xn,m

t−u
〉)2)1/2

(22)

+ E
(
E
(∫ t+u

t
⟨Hξmϕ,X

n,m
s ⟩ ds ⟨ϕ,Xn,m

t ⟩
∣∣∣Fn,mt

)2)1/2

× E
((
⟨ϕ,Xn,m

t ⟩ −
〈
ϕ,Xn,m

t−u
〉)2)1/2

.

For the first term by Jensen’s inequality,

E
(
E
(∫ t+u

t

〈 2
n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
+ 2 ⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩ ds
∣∣∣Fn,mt

)2)1/2

≤
(
u

∫ t+u

t
E
((〈 2

n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
+ 2 ⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩
)2
)
ds

)1/2

.

The functions in the integral can be bounded uniformly in n by Lemma 2.20. So, this
term is of order u uniformly in n. Similar considerations apply to the term

E
(
E
(∫ t+u

t
⟨Hξmϕ,X

n,m
s ⟩ ds ⟨ϕ,Xn,m

t ⟩
∣∣∣Fn,mt

)2)1/2

,

which is also of order u. By taking the expectation of (21), we establish that

E
((
⟨ϕ,Xn,m

t ⟩ −
〈
ϕ,Xn,m

t−u
〉)2)1/2

≲ u1/2

and that both summands in (22) are of a sufficiently high order. This yields the tightness
of (Xn,m)n≥N0 .

□
The martingale problem for the killed mollified Super Brownian Motion is given by:

Definition 2.34
We define the martingale problem for (Lm, D(Lm)) by:

D(Lm) = {exp(−⟨ϕ, ·⟩)|ϕ ∈ Dom(Hξm), ϕ ≥ 0},

where for ϕ ∈ Dom(Hξm), ϕ ≥ 0, the generator is given by

Lm exp(−⟨ϕ, ·⟩)(µ) =
〈
−Hξmϕ+ 1

2ϕ
2, µ

〉
exp(−⟨ϕ, µ⟩).
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We call any solution to this martingale problem a killed mollified Super Brownian Motion.

The following is a technical result which will be applied in the next theorem.

Lemma 2.35
Let ϕ ∈ C0((0, L)2) and extend any such function by 0 to [0, L]2. Then it holds that for
n sufficiently large, n log(1− ϕ/n)→ −ϕ uniformly in [0, L]2.

Proof
Dini’s theorem states that it suffices to show that n 7→ n log(1− ϕ/n) is non-decreasing
and converges pointwise to −ϕ. Let N0 ∈ N be such that for any n ≥ N0, ϕ(x)/n < 1 for
any x ∈ [0, L]2. Pointwise convergence is clear, since n log(1 − ϕ/n) = log((1 − ϕ/n)n)
and it suffices to show monotonicity. If we interpret [N0,∞) ∋ n 7→ n log(1− ϕ/n) as a
function with continuous domain, then we get

d

dn
n log

(
1− ϕ(x)

n

)
= log

(
1− ϕ(x)

n

)
+ ϕ(x)

n

1
1− ϕ(x)

n

.

It suffices to show that this derivative stays non-negative if n is large enough. We write
for 0 ≤ y ≤ 1, f(y) = log(1− y) + y/(1− y). For y = 0, f(0) = 0. Next for y ∈ (0, 1),

d

dy
f(y) = y

(1− y)2 ≥ 0.

Noting that y = ϕ(x)/n yields the claim.
□

We also need to extend the space of admissible functions in the definition of Cc-vague
convergence.

Lemma 2.36
Assume that µn ∈ M((0, L)2), n ∈ N, such that µn → µ, Cc-vaguely. Then, if
K := supn∈N⟨1(0,L)2 , µn⟩ < ∞, it follows that µn → µ, C0-vaguely, i.e. in duality
with C0((0, L)2)-functions.

Proof
We first show that ⟨1(0,L)2 , µ⟩ < ∞. To see this, let ψk ↑ 1(0,L)2 , ψk ∈ Cc((0, L)2),
0 ≤ ψk ≤ 1, k ∈ N. Then for k and ε > 0 fixed, |⟨ψk, µn − µ⟩| ≤ ε for n sufficiently
large by the definition of Cc-vague convergence. Also, |⟨ψk, µn⟩| ≤ ∥ψk∥L∞⟨1(0,L)2 , µn⟩ ≤
K < ∞, uniformly in n and k. Consequently uniformly in k ∈ N, |⟨ψk, µ⟩| ≤ ε + K.
The monotone convergence theorem then yields the claim. Let ϕ ∈ C0((0, L)2). By the
Stone-Weierstrass theorem for locally compact spaces, it follows that there exist some

76



2.3 The Superprocess Limit: Killed Mollified Super Brownian Motion

(ϕk)k∈N such that ϕk ∈ Cc((0, L)2) for any k ∈ N and ϕk → ϕ uniformly. We write

|⟨ϕ, µn⟩ − ⟨ϕ, µ⟩|
≤ |⟨ϕ, µn⟩ − ⟨ϕk, µn⟩|+ |⟨ϕk, µn⟩ − ⟨ϕk, µ⟩|+ |⟨ϕk, µ⟩ − ⟨ϕ, µ⟩|
≤ sup

n∈N
⟨1(0,L)2 , µn⟩∥ϕ− ϕk∥L∞ + |⟨ϕk, µn⟩ − ⟨ϕk, µ⟩|+ ⟨1(0,L)2 , µ⟩∥ϕ− ϕk∥L∞ .

Let ε > 0 be arbitrary. For the first and the third term we can choose k large enough
independently of n such that those are bounded by ε/3. For the third term we can then
choose n large enough by the definition of Cc-vague convergence to also bound this term
by ε/3. This yields the claim.

□
Following the approach from [Eth00, Section 1.5], we can now deduce convergence of the
generators:

Theorem 2.37 Cf. [Eth00, Section 1.5]
Let m ∈ N, nµn,m ∈ E, n ∈ N, and µm ∈ MF ((0, L)2) such that µn,m → µm
in M((0, L)2) and also supn≥N0⟨1(0,L)2 , µn,m⟩ < ∞. Then conditions (16), (17) and
(18) of Theorem 2.22 hold for the martingale problems for (Ln,m, D(Ln,m))n≥N0 and
(Lm, D(Lm)) started in µn,m and µm ∈MF ((0, L)2) respectively.

Proof
It is important to note that the martingale problem for (Lm, D(Lm)) treats functions
vanishing at the boundary, while we equipped the state space with the topology of Cc-
vague convergence. Hence, we first have to do some surgery.
Let (Xnl,m)l∈N be some subsequence of (Xn,m)n∈N. Assume that Xnl,m

(−L−1,L+1)2 is a solu-
tion to the martingale problem for (Ln,m, D(Ln,m)) on (−L−1, L+1)2 which is coupled
to Xnl,m

(0,L)2 := Xnl,m on (0, L)2 such that Xnl,m
(0,L)2 ≤ Xnl,m

(−L−1,L+1)2 in the sense of measures.
This can be achieved by first defining the process on (−L − 1, L + 1)2 and then killing
all particles that leave (0, L)2. Both processes start in µn,m after extending the measure
by 0.
By using the relative compactness, we can find a subsubsequence (n∗

l )l∈N such that
both processes converge weakly. Let Z l,m(0,L)2 , Z

l,m
(−L−1,L+1)2 , Z

m
(0,L)2 and Zm(−L−1,L+1)2 be

their almost surely converging counterparts from the Skorokhod representation theorem.
We claim that for any φ ∈ Cc((−L−1, L+1)2) such that 1(0,L)2 ≤ φ, ⟨1(0,L)2 , Zm(0,L)2(t)⟩ ≤
⟨φ,Zm(−L−1,L+1)2(t)⟩.
Proof of the claim: We will see in Theorem 2.42 below an argument which shows that
Zm(0,L)2 is a.s. continuous. Hence it follows from Theorem 2.28, that a.s. for any
0 ≤ t ≤ T , Z l,m(0,L)2(t) → Zm(0,L)2(t), Cc-vaguely. Since Law((Xn∗

l ,m

(0,L)2 , X
n∗

l ,m

(−L−1,L+1)2)) is
concentrated on sets, where X

n∗
l ,m

(0,L)2 ≤ X
n∗

l ,m

(−L−1,L+1)2 and the laws coincide, the same
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follows for the counterparts. By [Kle14, Lemma 13.15],

⟨1(0,L)2 , Zm(0,L)2(t)⟩ ≤ lim inf
l→∞

⟨1(0,L)2 , Z l,m(0,L)2(t)⟩

≤ lim inf
l→∞

⟨φ,Z l,m(−L−1,L+1)2(t)⟩ = ⟨φ,Zm(−L−1,L+1)2(t)⟩.

This yields the claim.
Let 0 < t < T and let λl be is as in Lemma 2.27. Then, for φ ∈ Cc((−L − 1, L + 1)2),
φ ≥ 0, such that 1(0,L)2 ≤ φ,

⟨1(0,L)2 , Z l,m(0,L)2(t)⟩ ≤ sup
0≤s≤λl(T )

⟨1(0,L)2 , Z l,m(0,L)2(λ−1
l (s))⟩

≤ sup
0≤s≤λl(T )

⟨φ,Z l,m(−L−1,L+1)2(λ−1
l (s))⟩.

We claim that as l→∞,

sup
0≤s≤λl(T )

|⟨φ,Z l,m(−L−1,L+1)2(λ−1
l (s))⟩ − ⟨φ,Zm(−L−1,L+1)2(s)⟩| → 0.

Proof of the claim: Assume not, then there exists some ε > 0 and a sequence (sl)l∈N,
0 ≤ sl ≤ λl(T ), such that for any l ∈ N,

|⟨φ,Z l,m(−L−1,L+1)2(λ−1
l (sl))⟩ − ⟨φ,Zm(−L−1,L+1)2(sl)⟩| ≥ ε.

We may choose φ = fk∗ , k∗ ∈ N, for some fk∗ as in Theorem 2.25. However, then

sup
0≤s≤λl(T )

∞∑
k=1

2−k(1− exp(−|⟨fk, Z l,m(−L−1,L+1)2(λ−1
l (s))⟩ − ⟨fk, Zm(−L−1,L+1)2(s)⟩|))

≥ 2−k∗(1− exp(−ε)),

in contradiction to Lemma 2.27. This yields the claim.
We get

⟨1(0,L)2 , Z l,m(0,L)2(t)⟩ ≤ sup
0≤s≤λl(T )

|⟨φ,Z l,m(−L−1,L+1)2(λ−1
l (s))⟩ − ⟨φ,Zm(−L−1,L+1)2(s)⟩|

+ sup
0≤s≤λl(T )

|⟨φ,Zm(−L−1,L+1)2(s)⟩|.

Since we may assume that for l sufficiently large, λl(T ) ≤ T + 1, it follows that
⟨1(0,L)2 , Z l,m(0,L)2(t)⟩ is uniformly bounded in l and 0 ≤ t ≤ T by the claim above and
the fact that [0, T + 1] ∋ t 7→ Zm(−L−1,L+1)2(t) maps into the space of locally finite meas-
ures.
Consequently, by Theorem 2.28 and Lemma 2.36 we may assume that a.s. for any
0 ≤ t ≤ T , Z l,m(0,L)2(t)→ Zm(0,L)2(t), C0-vaguely.
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Let ϕ ∈ Dom(Hξm), ϕ ≥ 0. We first show condition (17). We get that with the notation
of Theorem 2.22, pointwise by the dominated convergence theorem,

∫ t+s

t

〈
−Hξmϕ+ 1

2ϕ
2, Z l,m(0,L)2(u)

〉
exp(−⟨ϕ,Z l,m(0,L)2(u)⟩)du

k∏
i=1

hi(Z l,m(0,L)2(ti))

→
∫ t+s

t

〈
−Hξmϕ+ 1

2ϕ
2, Zm(0,L)2(u)

〉
exp(−⟨ϕ,Zm(0,L)2(u)⟩)du

k∏
i=1

hi(Zm(0,L)2(ti)),

where we used the convergence and a.s. uniform boundedness of ⟨1(0,L)2 , Z l,m(0,L)2(u)⟩ in
l and 0 < u ≤ t+ s. What is more, pointwise

exp(−⟨ϕ,Z l,m(0,L)2(t)⟩)
k∏
i=1

hi(Z l,m(0,L)2(ti))→ exp(−⟨ϕ,Zm(0,L)2(t)⟩)
k∏
i=1

hi(Zm(0,L)2(ti)).

Since from here on, all arguments shall involve (probabilistic) distributions, we switch
back to the original processes, using that they have the same law as their Skorokhod
counterparts. It suffices to establish uniform integrability to show (17). However,

E

(∫ t+s

t

〈
−Hξmϕ+ 1

2ϕ
2, X

n∗
l ,m

u

〉
exp(−⟨ϕ,Xn∗

l ,m
u ⟩)du

k∏
i=1

hi(X
n∗

l ,m
ti )

)2
≲ s2

∥∥∥∥−Hξmϕ+ 1
2ϕ

2
∥∥∥∥2

L∞
sup

0≤u≤t+s
sup
n≥N0

E(⟨1(0,L)2 , Xn,m
u ⟩2).

In order to establish (16), let us note: The integrability of the limit Zm(0,L)2 follows by
an application of Fatou’s lemma and the comparison argument above, see Lemma 2.38
for the details.
For condition (18), let fn := 1 − ϕ/n. We can choose n large enough such that fn > 0
and exp(⟨log(fn), ·⟩) ∈ D(Lyn,m). We get by the martingale problem for (Lyn,m, D(Lyn,m))
that

En log(fn)
n,m (t) : = exp(⟨log(fn), nXn,m

t ⟩)− exp(⟨log(fn), nXn,m
0 ⟩)

−
∫ nt

0

〈
Ga
nfn + Φn,m(fn)− fn

fn
, nXn,m

s/n

〉
exp

(〈
log(fn), nXn,m

s/n

〉)
ds

is a martingale. We have Φn,m(fn) = Φn,m(1)−ϕn−1Φ′
n,m(1)+1/2ϕ2n−2Φ′′

n,m(1). Hence
we get

En log(fn)
n,m (t) = exp(⟨n log(fn), Xn,m

t ⟩)− exp(⟨n log(fn), Xn,m
0 ⟩)

−
∫ t

0

〈
n∆fn + nϕ(1− Φ′

n,m(1)) + 1/2ϕ2Φ′′
n,m(1) + n2(Φn,m(1)− 1)

fn
, Xn,m

s

〉
× exp(⟨n log(fn), Xn,m

s ⟩)ds.
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By the specific form of the probability generating function, we have Φn,m(1) = 1, n(1−
Φ′
n,m(1)) = n(1− 2ζ+1

n,m) = −(ξm − cm) and Φ′′
n,m(1) = 2ζ+1

n,m. So,

En log(fn)
n,m (t) = exp(⟨n log(fn), Xn,m

t ⟩)− exp(⟨n log(fn), Xn,m
0 ⟩)

−
∫ t

0

〈
−Hξmϕ+ 1/2ϕ22ζ+1

n,m

fn
, Xn,m

s

〉
exp(⟨n log(fn), Xn,m

s ⟩)ds.

Let h(·) = exp(−⟨ϕ, ·⟩) for ϕ ∈ Dom(Hξm), ϕ ≥ 0. Let k ∈ N, (hi)i∈{1,...,k} be such that
hi ∈ Cb(M((0, L)2)) and 0 ≤ t1 < · · · < tk ≤ t < t+ s. We compute

E
((

h(Xn,m
t+s )− h(Xn,m

t )−
∫ t+s

t
Lmh(Xn,m

u )du
) k∏
i=1

hi(Xn,m
ti )

)

= E
((

exp(−
〈
ϕ,Xn,m

t+s
〉
)− exp(

〈
n log(fn), Xn,m

t+s
〉
)

− exp(−⟨ϕ,Xn,m
t ⟩) + exp(⟨n log(fn), Xn,m

t ⟩)

+
∫ t+s

t

〈
−Hξmϕ+ 1/2ϕ22ζ+1

n,m

fn
, Xn,m

u

〉
exp(⟨n log(fn), Xn,m

u ⟩) (23)

−
〈
−Hξmϕ+ 1/2ϕ2, Xn,m

u

〉
exp(−⟨ϕ,Xn,m

u ⟩)du
)

k∏
i=1

hi(Xn,m
ti )

)
.

We get by Lemma 2.35 that n log(fn) = log((1−ϕ/n)n)→ −ϕ uniformly in [0, L]2. Also,
ϕ ≥ 0 and Xn,m is a positive measure. We get for K > 0,

E
(

(exp(−⟨ϕ,Xn,m
t ⟩)− exp(⟨n log(fn), Xn,m

t ⟩))
k∏
i=1

hi(Xn,m
ti )

)

= E
(

(exp(−⟨ϕ,Xn,m
t ⟩)− exp(⟨n log(fn), Xn,m

t ⟩))
k∏
i=1

hi(Xn,m
ti );

〈
1(0,L)2 , Xn,m

t

〉
> K

)

+ E
(

(exp(−⟨ϕ,Xn,m
t ⟩)− exp(⟨n log(fn), Xn,m

t ⟩))
k∏
i=1

hi(Xn,m
ti );

〈
1(0,L)2 , Xn,m

t

〉
≤ K

)
.

Note that n log(fn(x)) = n log(1 − ϕ(x)/n) ≤ 0 as we have chosen n large enough such
that 0 < 1 − ϕ(x)/n < 1 by the non-negativity of ϕ. By the non-positivity of the
exponents for n large enough and the boundedness of the hi,

E
(

(exp(−⟨ϕ,Xn,m
t ⟩)− exp(⟨n log(fn), Xn,m

t ⟩)
k∏
i=1

hi(Xn,m
ti );

〈
1(0,L)2 , Xn,m

t

〉
> K

)
≲ P(⟨1(0,L)2 , Xn,m

t ⟩ > K) ≤ 1/K sup
n≥N0

E(⟨1(0,L)2 , Xn,m
t ⟩),
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which vanishes as K →∞ uniformly in n by Lemma 2.18. Inside the second expectation,
where ⟨1(0,L)2 , Xn,m

t ⟩ ≤ K,

⟨|−ϕ− n log(fn)|, Xn,m
t ⟩ ≤ ⟨1(0,L)2 , Xn,m

t ⟩∥−ϕ− n log(fn)∥L∞ ≤ K∥−ϕ− n log(fn)∥L∞ .

(24)

By using Taylor’s theorem

exp(−⟨ϕ,Xn,m
t ⟩)− exp(⟨n log(fn), Xn,m

t ⟩)
= exp(⟨n log(fn), Xn,m

t ⟩)(−⟨ϕ,Xn,m
t ⟩ − ⟨n log(fn), Xn,m

t ⟩) (25)
+ o(−⟨ϕ,Xn,m

t ⟩ − ⟨n log(fn), Xn,m
t ⟩).

We conclude that the term

E
(

(exp(−⟨ϕ,Xn,m
t ⟩)− exp(⟨n log(fn), Xn,m

t ⟩))
k∏
i=1

hi(Xn,m
ti ); ⟨1(0,L)2 , Xn,m

t ⟩ ≤ K
)

vanishes as well. This implies that the first differences in (23) vanish.
Furthermore, 2ζ+1

n,m → 1 and fn → 1 as n→∞ uniformly in [0, L]2. For the integral in
(23) we get∫ t+s

t

(〈
−Hξmϕ+ 1/2ϕ22ζ+1

n,m

fn
, Xn,m

u

〉
−
〈
−Hξmϕ+ 1

2ϕ
2, Xn,m

u

〉)
× exp(⟨n log(fn), Xn,m

u ⟩)

−
〈
−Hξmϕ+ 1

2ϕ
2, Xn,m

u

〉
(exp(−⟨ϕ,Xn,m

u ⟩)− exp(⟨n log(fn), Xn,m
u ⟩))du.

For the first term by the non-positivity of the exponent for n large enough,

E
((∫ t+s

t

(〈
−Hξmϕ+ 1/2ϕ22ζ+1

n,m

fn
, Xn,m

u

〉
−
〈
−Hξmϕ+ 1

2ϕ
2, Xn,m

u

〉)

× exp(⟨n log(fn), Xn,m
u ⟩)du

)
k∏
i=1

hi(Xn,m
ti )

)

≲

∥∥∥∥∥−Hξmϕ+ 1/2ϕ22ζ+1
n,m

fn
−
(
−Hξmϕ+ 1

2ϕ
2
)∥∥∥∥∥

L∞

∫ t+s

t
E
(
⟨1(0,L)2 , Xn,m

u ⟩
)
du→ 0,

where we used that fn → 1 uniformly, along with the other terms, and that the first
moment of Xn,m

t is integrable over finite time horizons uniformly in n ≥ N0. To be more
precise, we note that

sup
x∈[0,L]2

∣∣∣∣∣−Hξmϕ(x) + 1/2ϕ2(x)2ζ+1
n,m(x)

fn(x) −
(
−Hξmϕ(x) + 1/2ϕ2(x)

)∣∣∣∣∣
≤

supx∈[0,L]2
∣∣1/(2n)ϕ2(x)(ξm(x)− cm)− ((∆ + ξm(x)− cm)ϕ(x))ϕ(x)/n+ 1/(2n)ϕ3(x)

∣∣
infx∈[0,L]2 |1− ϕ(x)/n|

→ 0,
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as n→∞. For the second term by Fubini’s theorem and Hölder’s inequality,

E
(∫ t+s

t

〈
−Hξmϕ+ 1

2ϕ
2, Xn,m

u

〉
(exp(−⟨ϕ,Xn,m

u ⟩)− exp(⟨n log(fn), Xn,m
u ⟩))du

×
k∏
i=1

hi(Xn,m
ti )

)

≲
∫ t+s

t
E
(〈
−Hξmϕ+ 1

2ϕ
2, Xn,m

u

〉2
)1/2

× E
(
(exp(−⟨ϕ,Xn,m

u ⟩)− exp(⟨n log(fn), Xn,m
u ⟩))2

)1/2
du

≤
(∫ t+s

t
E
(〈
−Hξmϕ+ 1

2ϕ
2, Xn,m

u

〉2
)
du

)1/2

×
(∫ t+s

t
E
(
(exp(−⟨ϕ,Xn,m

u ⟩)− exp(⟨n log(fn), Xn,m
u ⟩))2

)
du

)1/2

We get similarly to the above,

E
(
(exp(−⟨ϕ,Xn,m

u ⟩)− exp(⟨n log(fn), Xn,m
u ⟩))2

)
≤ E

(
(exp(−⟨ϕ,Xn,m

u ⟩)− exp(⟨n log(fn), Xn,m
u ⟩))2; ⟨1(0,L)2 , Xn,m

u ⟩ > K
)

+ E
(
(exp(−⟨ϕ,Xn,m

u ⟩)− exp(⟨n log(fn), Xn,m
u ⟩))2; ⟨1(0,L)2 , Xn,m

u ⟩ ≤ K
)
.

So,

E
(
(exp(−⟨ϕ,Xn,m

u ⟩)− exp(⟨n log(fn), Xn,m
u ⟩))2; ⟨1(0,L)2 , Xn,m

u ⟩ > K
)

≤ 4P(⟨1(0,L)2 , Xn,m
u ⟩ > K) ≤ 4/K sup

n≥N0

E(⟨1(0,L)2 , Xn,m
u ⟩),

and the RHS is integrable over finite time horizons uniformly over n ≥ N0 and vanishes
as K →∞. Next,

E
(
(exp(−⟨ϕ,Xn,m

u ⟩)− exp(⟨n log(fn), Xn,m
u ⟩))2; ⟨1(0,L)2 , Xn,m

u ⟩ ≤ K
)
→ 0,

as n→∞ using (24) and (25). Finally,

E
(〈
−Hξmϕ+ 1

2ϕ
2, Xn,m

u

〉2
)
≤
∥∥∥∥−Hξmϕ+ 1

2ϕ
2
∥∥∥∥2

L∞
E
(〈

1(0,L)2 , Xn,m
u

〉2
)
,

and by Lemma 2.20, this term is integrable over finite time horizons uniformly in n ≥ N0.
□

Having established tightness and the convergence of generators, we now turn towards
uniqueness of the limiting martingale problem. Note that we already have the weak

82



2.3 The Superprocess Limit: Killed Mollified Super Brownian Motion

convergence of a subsequence Xn,m → Xm as n→∞, see the proof of Theorem 2.22.

Assumption: In the following, if we denote the starting point ofXm by µm ∈MF ((0, L)2),
we implicitly assume that there is some sequence nµn,m ∈ E such that µn,m → µm in
M((0, L)2) and supn≥N0⟨1(0,L)2 , µn,m⟩ < ∞. Also, we denote by (Fmt )t≥0 the natural
filtration of Xm.

Uniqueness can be achieved via the injectivity of Laplace transforms. In order to es-
tablish an exponential martingale for Xm, a solution to the martingale problem for
(Lm, D(Lm)), we first derive some preliminary moment bounds.

Lemma 2.38
Let Xm be a solution to the martingale problem for (Lm, D(Lm)) started in some µm ∈
MF ((0, L)2). It holds for T > 0, m ∈ N, that

sup
0≤t≤T

E
(〈

1(0,L)2 , Xm
t

〉4
)
<∞.

In particular by Hölder’s inequality the same holds true for lower order moments as well.
Also, Xm is actually a finite measure a.s..

Proof
By the Skorokhod representation theorem, we may assume that Xn,m → Xm a.s., at
least for a subsequence. Hence we can apply Lemma 2.28, Fatou’s lemma and Lemma
2.20 to get for ϕ ∈ Cc((0, L)2),

E
(
⟨ϕ,Xm

t ⟩
4
)
≤ lim inf

n→∞
E
(
⟨ϕ,Xn,m

t ⟩4
)
≤ sup

n≥N0

E
(
⟨ϕ,Xn,m

t ⟩4
)
,

which is uniformly bounded over finite time horizons for N0 sufficiently large.
We cannot choose ϕ = 1(0,L)2 in the above, since we equipped M((0, L)2) with the
vague topology in duality with Cc((0, L)2)- functions. In order to show that our killed
mollified Super Brownian Motion does not explode towards the boundary, we use again
a comparison argument.
Let Xn,m

(0,L)2 , X
n,m
(−L−1,L+1)2 be solutions to the martingale problem for (Ln,m, D(Ln,m)) on

(0, L)2 and (−L − 1, L + 1)2 respectively, both started in the same µn,m, nµn,m ∈ E,
such that µn,m → µm ∈ M((0, L)2) and supn≥N0⟨1(0,L)2 , µn,m⟩ < ∞. We assume as in
the proof of Theorem 2.37, that we can define both processes on the same underlying
probability space and that Xn,m

(0,L)2(t) ≤ Xn,m
(−L−1,L+1)2(t) ↾(0,L)2 holds for any t ≥ 0. We

get (Xn,m
(0,L)2 , X

n,m
(−L−1,L+1)2)→ (Xm

(0,L)2 , Xm
(−L−1,L+2)2) weakly with Xm

(0,L)2 , Xm
(−L−1,L+1)2

being killed mollified Super Brownian Motions on (0, L)2 and (−L−1, L+1)2 respectively.
By the Skorokhod representation theorem, there are some (Zn,m(0,L)2 , Z

n,m
(−L−1,L+1)2) →

(Zm(0,L)2 , Zm(−L−1,L+1)2) with Law((Zn,m(0,L)2 , Z
n,m
(−L−1,L+1)2)) = Law((Xn,m

(0,L)2 , X
n,m
(−L−1,L+1)2))

for any n ≥ N0 and Law((Zm(0,L)2 , Zm(−L−1,L+1)2)) = Law((Xm
(0,L)2 , Xm

(−L−1,L+1)2)).
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It follows as in the proof of Theorem 2.37, that for any ϕ ∈ Cc((−L − 1, L + 1)2),
1(0,L)2 ≤ ϕ, ⟨1(0,L)2 , Zm(0,L)2(t)⟩ ≤ ⟨ϕ,Zm(−L−1,L+1)2(t)⟩.
Let ϕ ∈ Cc((−L− 1, L+ 1)2), ϕ ≥ 0, be such that 1(0,L)2 ≤ ϕ. Then,

E
(〈

1(0,L)2 , Xm
(0,L)2(t)

〉4
)

= E
(〈

1(0,L)2 , Zm(0,L)2(t)
〉4
)

≤ E
(〈
ϕ,Zm(−L−1,L+1)2(t)

〉4
)

= E
(〈
ϕ,Xm

(−L−1,L+1)2(t)
〉4
)

and the claim follows by the above. Finally, the finiteness of Zm(0,L)2 follows by the local
finiteness of Zm(−L−1,L+1)2 .

□
Since ∥ξm∥L∞ → ∞ as m → ∞, such pointwise considerations do not yield a bound
which is uniform in m, hence the terminology ’preliminary’. However, the above can still
be used to extract some information about Xm.

Lemma 2.39
Let Xm be a solution to the martingale problem for (Lm, D(Lm)). Assume that ϕ ∈
C1([0,∞), C0((0, L)2)), ϕ(t) ∈ Dom(Hξm) for any t ≥ 0 and ϕ ≥ 0. Also assume that
Hξmϕ ∈ C([0,∞), C0((0, L)2)). Then for t ≥ 0,

Ẽϕm(t) := exp(−⟨ϕ(t), Xm
t ⟩)− exp(−⟨ϕ(0), Xm

0 ⟩)

−
∫ t

0

〈
−Hξmϕ(s) + 1

2ϕ
2(s)− ∂sϕ(s), Xm

s

〉
exp(−⟨ϕ(s), Xm

s ⟩)ds

is a martingale.

Proof
We define for ϕ ∈ Dom(Hξm), ϕ ≥ 0, Eϕm to be the martingale associated to the
martingale problem for (Lm, D(Lm)). Let (πk)k∈N be a sequence of partitions of [0, t]
such that πk = (tk0, . . . , tkk), tk0 < · · · < tkk, tk0 = 0, tkk = t and limk→∞ supi∈{1,...,k} t

k
i −

tki−1 = 0. We compute now for ϕ as in the claim,

exp (−⟨ϕ(t), Xm
t ⟩)− exp (−⟨ϕ(0), Xm

0 ⟩)

=
k∑
i=1

exp
(
−
〈
ϕ(tki ), Xm

tki

〉)
− exp

(
−
〈
ϕ(tki ), Xm

tki−1

〉)
+ exp

(
−
〈
ϕ(tki ), Xm

tki−1

〉)
− exp

(
−
〈
ϕ(tki−1), Xm

tki−1

〉)
.
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Consequently, it follows that

exp (−⟨ϕ(t), Xm
t ⟩)− exp (−⟨ϕ(0), Xm

0 ⟩)

=
k∑
i=1

E
ϕ(tki )
m (tki )− E

ϕ(tki )
m (tki−1)

+
∫ tki

tki−1

〈
−Hξmϕ(tki ) + 1

2ϕ(tki )2, Xm
s

〉
exp

(
−
〈
ϕ(tki ), Xm

s

〉)
ds

+
exp

(
−
〈
ϕ(tki ), Xm

tki−1

〉)
− exp

(
−
〈
ϕ(tki−1), Xm

tki−1

〉)
tki − tki−1

(tki − tki−1).

By the mean-value theorem there exists some tki,∗ ∈ (tki−1, t
k
i ) such that

exp
(
−
〈
ϕ(tki ), Xm

tki−1

〉)
− exp

(
−
〈
ϕ(tki−1), Xm

tki−1

〉)
tki − tki−1

= −
〈
∂tϕ(tki,∗), Xm

tki−1

〉
exp

(
−
〈
ϕ(tki,∗), Xm

tki−1

〉)
.

We define

ϕk(t) :=
k∑
i=1

ϕ(tki )1[tki−1,t
k
i )(t), ϕk,∗(t) :=

k∑
i=1

ϕ(tki,∗)1[tki−1,t
k
i )(t),

ϕ′
k(t) :=

k∑
i=1

∂tϕ(tki,∗)1[tki−1,t
k
i )(t), Xm

k (t) :=
k∑
i=1

Xm
tki−1

1[tki−1,t
k
i )(t)

and write
k∑
i=1

∫ tki

tki−1

〈
−Hξmϕ(tki ) + 1

2ϕ(tki )2, Xm
s

〉
exp

(
−
〈
ϕ(tki ), Xm

s

〉)
ds

=
∫ t

0

〈
−Hξmϕk(s) + 1

2ϕk(s)
2, Xm

s

〉
exp (−⟨ϕk(s), Xm

s ⟩) ds.

Since ϕk → ϕ and Hξmϕk → Hξmϕ pointwise and uniformly bounded, we get by the
dominated convergence theorem that for each realisation of Xm,

k∑
i=1

∫ tki

tki−1

〈
−Hξmϕ(tki ) + 1

2ϕ(tki )2, Xm
s

〉
exp

(
−
〈
ϕ(tki ), Xm

s

〉)
ds

→
∫ t

0

〈
−Hξmϕ(s) + 1

2ϕ(s)2, Xm
s

〉
exp (−⟨ϕ(s), Xm

s ⟩) ds.
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Similarly,

k∑
i=1

exp
(
−
〈
ϕ(tki ), Xm

tki−1

〉)
− exp

(
−
〈
ϕ(tki−1), Xm

tki−1

〉)
tki − tki−1

(tki − tki−1)

=
∫ t

0
−
〈
ϕ′
k(s), Xm

k (s)
〉

exp (−⟨ϕk,∗(s), Xm
k (s)⟩) ds.

It holds that ϕ′
k → ∂tϕ, ϕk,∗ → ϕ pointwise and uniformly bounded. Also Xm

k → Xm,
C0-vaguely as k → ∞ pointwise in time and uniformly bounded, see also Lemma 2.43
below. It follows by the dominated convergence theorem, that realisation-wise,

k∑
i=1

exp
(
−
〈
ϕ(tki ), Xm

tki−1

〉)
− exp

(
−
〈
ϕ(tki−1), Xm

tki−1

〉)
tki − tki−1

(tki − tki−1)

→
∫ t

0
−⟨∂sϕ(s), Xm

s ⟩ exp (−⟨ϕ(s), Xm
s ⟩) ds.

In order to establish L1-convergence, we verify uniform integrability. We compute

E
((

k∑
i=1

∫ tki

tki−1

〈
−Hξmϕ(tki ) + 1

2ϕ(tki )2, Xm
s

〉
exp

(
−
〈
ϕ(tki ), Xm

s

〉)
ds

)2)

= E
((∫ t

0

〈
−Hξmϕk(s) + 1

2ϕk(s)
2, Xm

s

〉
exp (−⟨ϕk(s), Xm

s ⟩) ds
)2)

≤ sup
0≤s≤t

∥∥∥∥−Hξmϕ(s) + 1
2ϕ

2(s)
∥∥∥∥2

L∞
t

∫ t

0
E
(〈

1(0,L)2 , Xm
s

〉2
)
ds <∞.

The RHS is bounded by Lemma 2.38. For the second term,

E


 k∑
i=1

exp
(
−
〈
ϕ(tki ), Xm

tki−1

〉)
− exp

(
−
〈
ϕ(tki−1), Xm

tki−1

〉)
tki − tki−1

(tki − tki−1)


2

= E
((∫ t

0
−
〈
ϕ′
k(s), Xm

k (s)
〉

exp (−⟨ϕk,∗(s), Xm
k (s)⟩) ds

)2)
≲ sup

0≤s≤t
∥∂tϕ∥2L∞t

2 sup
0≤s≤t

E(⟨1(0,L)2 , Xm
s ⟩2) <∞.

Let Ẽϕm(t) := limk→∞
∑k
i=1E

ϕ(tki )
m (tki ) − E

ϕ(tki )
m (tki−1). In order to prove the martingale

property for Ẽϕm(t), note that for s < t,

E
(
Ẽϕm(t)

∣∣Fms ) = lim
k→∞

E
(

k∑
i=1

E
ϕ(tki )
m (tki )− E

ϕ(tki )
m (tki−1)

∣∣∣∣∣Fms
)
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and on the RHS we can choose a subsequence of partitions containing s as an element.
Then the martingale property of the limit follows by the martingale property of the
E
ϕ(tki )
m .

□
We can now choose a convenient time dependent function to derive an exponential
martingale. This function is precisely the solution to the Evolution Equation for the
killed mollified Super Brownian Motion discussed in Section 1.9.

Lemma 2.40
Let ψ ∈ Dom(Hξm) ∩ C(α+2)+

d , ψ ≥ 0, ψ ̸= 0, t > 0, and γ > 0 be sufficiently small.
Then it holds that the process for s ≤ t given by

Eγψm (s, t) := exp(−
〈
Umt−s(γψ), Xm

s

〉
)− exp(−⟨Umt (γψ), Xm

0 ⟩)

is a bounded martingale.

Proof
The assertion is a consequence of Lemma 2.39 and Lemma 1.63. The non-negativity
follows from Conjecture 1.65.

□
We can now finally prove the uniqueness of the killed mollified Super Brownian Motion
using the (non-linear) semigroup t 7→ Umt .

Lemma 2.41
Any solution to the martingale problem for (Lm, D(Lm)) started in µm ∈MF ((0, L)2) is
unique.

Proof
Let k ∈ N, 0 ≤ t1 ≤ · · · ≤ tk ≤ t and (ϕi)i∈{1,...,k} be such that ϕi ∈ Dom(Hξm)∩C(α+2)+

d ,
ϕi ≥ 0, ϕi ̸= 0 for any i ∈ {1, . . . , k}. Let γi > 0, i ∈ {1, . . . , k}. Let Xm be any solution
to the martingale problem (Lm, D(Lm)) started in µm. We compute with Lemma 2.40,

E(exp(−
〈
γ1ϕ1, X

m
t1

〉
) · · · · · exp(−⟨γkϕk, Xm

tk
⟩))

= E(exp(−
〈
γ1ϕ1, X

m
t1

〉
) · · · · · exp(−⟨γk−1ϕk−1, X

m
tk−1⟩) exp(−⟨Umtk−tk−1(γkϕk), Xm

tk−1⟩))
= E(exp(−

〈
γ1ϕ1, X

m
t1

〉
) · · · · · exp(−⟨γk−1ϕk−1 + Umtk−tk−1(γkϕk), Xm

tk−1⟩)).

We assumed that γk is sufficiently small. Using that 0 ≤ Umtk−tk−1ϕk ∈ Dom(Hξm) ∩
C(α+2)+
d , we can proceed inductively. Let us point out an important technical step:

When iterating the Evolution Equation as above, one arrives at the expression γk−1ϕk−1+
Umtk−tk−1(γkϕk) with γk−1, γk > 0. The constant γk = γk(ϕk, tk − tk−1) was chosen suffi-
ciently small for the construction of the Evolution Equation carried out in Lemma 1.64
to be valid until time tk − tk−1. Next one needs to choose γk−1 sufficiently small such
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2.4 Continuity of the Killed Mollified Super Brownian Motion

that one can run the Evolution Equation again until time tk−1 − tk−2 started from any
function γk−1u ∈ C

α+2+δ/8
d such that ∥u∥Cα+2+δ/8

d

≤ ∥ϕk−1∥Cα+2+δ/8
d

+ 1. Now,∥∥∥∥ϕk−1 + 1
γk−1

Utk−tk−1(γkϕk)
∥∥∥∥

Cα+2+δ/8
d

≤ ∥ϕk−1∥Cα+2+δ/8
d

+ 1
γk−1

∥∥Utk−tk−1(γkϕk)
∥∥

Cα+2+δ/8
d

.

Using (13), we can now refine our choice for γk such that the second term is bounded by
1. In a similar fashion, we can carry on the iteration by subsequently refining already
established coefficients. Using the injectivity of the Laplace transform, [Kal83, 15.5.1], we
get that the distributions of (

〈
ϕ1, X

m
t1

〉
, . . . , ⟨ϕk, Xm

tk
⟩) are uniquely determined. Using

that M = {⟨ϕ, ·⟩ |ϕ ∈ C∞
c ((0, L)2), ϕ ≥ 0} is a separating set of functions, we get that

the distribution of (Xm
t1 , . . . , X

m
tk

) is unique after an application of [EK86, Proposition
3.4.6].
Let D be the set containing the Borel measurable subsets A of D([0,∞),M((0, L)2)) on
which Law(Xm)(A) is uniquely determined. It follows by the continuity from below of
Law(Xm), that D is a Dynkin class.
Every finite dimensional cylinder set can be written as the intersection of sets {Xm

t ∈
A}, where A ⊂ M((0, L)2) is a Borel set and t ≥ 0. By [EK86, Proposition 3.7.1] it
follows that each such set is a Borel subset of D([0,∞),M((0, L)2)), hence each finite
dimensional cylinder set is a Borel set as well.
On the other hand, the set of finite-dimensional cylinders C is intersection stable and we
have shown that C ⊂ D. Consequently by the Dynkin Class theorem, [EK86, Appendix,
Theorem 4.2], σ(Xm

t , 0 ≤ t <∞) = σ(C) ⊂ D.
□

2.4 Continuity of the Killed Mollified Super Brownian Motion

In this section we prove the continuity of the killed mollified SBM. For this we need
another result:

Theorem 2.42 [EK86, Theorem 3.10.2]
Let (E, r) be a metric space. For x ∈ D([0,∞), E), we define

J(x) =
∫ ∞

0
exp(−u)(J(x, u) ∧ 1)du,

where J(x, u) := sup0≤t≤u r(x(t), x(t−)). Let (Zn)n∈N and Z be processes in D([0,∞), E)
such that Zn → Z weakly. Then Z is a.s. continuous if and only if J(Zn) → 0 weakly
as n→∞.

We can now apply Theorem 2.42:

Lemma 2.43 Cf. [PR19, Lemma 4.4]
The killed mollified Super Brownian Motion Xm started in µm ∈MF ((0, L)2) is almost
surely continuous.
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Proof
Let (fk)k∈N be as in Theorem 2.25. Since for any x ≥ 0, 1 − x ≤ exp(−x) ≤ 1, we get
that almost surely,

J(Xn,m) =
∫ ∞

0
exp(−u)

(
sup

0≤t≤u

∞∑
k=1

2−k(1− exp(−
∣∣⟨fk, Xn,m

t ⟩ −
〈
fk, X

n,m
t−

〉∣∣)) ∧ 1
)
du

≤
∫ ∞

0
exp(−u)

( ∞∑
k=1

sup
0≤t≤u

2−k∣∣⟨fk, Xn,m
t ⟩ −

〈
fk, X

n,m
t−

〉∣∣ ∧ 1
)
du

≤
∫ ∞

0
exp(−u)

( ∞∑
k=1

2−k 1
n
∥fk∥L∞ ∧ 1

)
du

≤ 1
n

∫ ∞

0
exp(−u)du.

Therefore J(Xn,m)→ 0 almost surely as n→∞, which yields the claim.
□

3 Construction of the Killed Rough Super Brownian Mo-
tion

In this section we construct the killed rough Super Brownian Motion as the limit of the
killed mollified Super Brownian Motion as m → ∞. This tells us that the kmSBM is
close to the krSBM for large m, a fact which we will again encounter in Section 4. By
doing so, we also establish that the kmSBM falls in the universality class of the krSBM,
establishing it as the first non-discrete process to do so.

3.1 The White Noise Limit: Killed Rough Super Brownian Motion

Before we proceed, we need to fix a suitable domain for our limiting martingale problem.
The fact that we work with paracontrolled distributions now forces us to be careful, since
pointwise arguments rarely carry over.

Definition 3.1 [PR19, p. 12]
Let DHξ

be as in Definition 1.59. We define the martingale problem for (L,D(L)) by
D(L) := {exp(−⟨ϕ, ·⟩)|ϕ ∈ DHξ

}, where for ϕ ∈ DHξ
the generator is given by

L exp(−⟨ϕ, ·⟩)(µ) =
〈
−Hξϕ+ 1

2ϕ
2, µ

〉
exp(−⟨ϕ, µ⟩).

We call any solution to the this martingale problem a killed rough Super Brownian Mo-
tion.

Remark 3.2
As established in Section 1.7, the crucial observation is that for u0 ∈ C(α+2)+

d , um0 ∈ Im
PAM,
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3.1 The White Noise Limit: Killed Rough Super Brownian Motion

HξAtu0 = Ttu0 − u0 ∈ Cα+2
d and HξmA

m
t u

m
0 = Tmt u

m
0 − um0 ∈ Cα+2

d . Therefore, the
convergence of HξmA

m
t u

m
0 → HξAtu0 can be achieved not just in L2, cf. Section 1.4,

but also in Cα+2
d , if um0 → u0 in Cα+2

d . By Lemma 1.56, it holds that Ttu0 ≥ 0 if u0 ≥ 0,
u0 ̸= 0, and consequently Atu0 ≥ 0. What is more for any u0 ∈ C(α+2)+

d , u0 ≥ 0, u0 ̸= 0,
1/tAtu0 → u0 as t ↓ 0 in Cα+2

d by Lemma 1.60.

We will once more apply Theorem 2.22. To do so, we need to establish first some
uniform bounds. This can be done by applying our preliminary bounds and Lemma 2.39
to achieve explicit moment expressions.

Lemma 3.3
Let m ∈ N and ϕ ∈ C1([0,∞), C0((0, L)2)), ϕ(t) ∈ Dom(Hξm) for any t ≥ 0 and ϕ ≥ 0.
Assume that Hξmϕ ∈ C([0,∞), C0((0, L)2). Then it holds that

L̃ϕm(t) := ⟨ϕ(t), Xm
t ⟩ − ⟨ϕ(0), Xm

0 ⟩ −
∫ t

0
⟨Hξmϕ(s) + ∂sϕ(s), Xm

s ⟩ ds

is a continuous, square-integrable martingale with quadratic variation

⟨L̃ϕm⟩t =
∫ t

0
⟨ϕ2(s), Xm

s ⟩ds.

What is more, we have the martingales

M̃1,ϕ
m (t) := ⟨ϕ(t), Xm

t ⟩
2 − ⟨ϕ(0), Xm

0 ⟩
2

−
∫ t

0
⟨ϕ2(s), Xm

s ⟩+ 2 ⟨Hξmϕ(s) + ∂sϕ(s), Xm
s ⟩ ⟨ϕ(s), Xm

s ⟩ ds,

M̃2,ϕ
m (t) :=

(
⟨ϕ(t), Xm

t ⟩ −
∫ t

0
⟨Hξmϕ(s) + ∂sϕ(s), Xm

s ⟩ ds
)
⟨ϕ(0), Xm

0 ⟩ ,

and the local martingale

M̃3,ϕ
m (t) := 2

∫ t

0
⟨Hξmϕ(s) + ∂sϕ(s), Xm

s ⟩ ⟨ϕ(s), Xm
s ⟩ ds

+
(∫ t

0
⟨Hξmϕ(s) + ∂sϕ(s), Xm

s ⟩ ds
)2
− 2 ⟨ϕ(t), Xm

t ⟩
∫ t

0
⟨Hξmϕ(s) + ∂sϕ(s), Xm

s ⟩ ds.

Proof
The claim follows as in Lemma 2.21 using Lemma 2.39 and Lemma 2.38, the computa-
tions are however simpler, due to the absence of non-trivial fractions in the generator.

□
We can argue as before to remove the Anderson Hamiltonian:
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Lemma 3.4
It holds that for s ≤ t and ϕ ∈ Dom(Hξm), ϕ ≥ 0,

Lϕm(s, t) :=
〈
Tmt−sϕ,X

m
s

〉
− ⟨Tmt ϕ,Xm

0 ⟩

is a continuous, square-integrable martingale with quadratic variation given by

⟨Lϕ(·, t)⟩s =
∫ s

0
⟨(Tmt−rϕ)2, Xm

r ⟩dr.

What is more,

M1,ϕ
m (s, t) :=

〈
Tmt−sϕ,X

m
s

〉2 − ⟨Tmt ϕ,Xm
0 ⟩

2 −
∫ s

0
⟨(Tmt−rϕ)2, Xm

r ⟩dr

is a martingale.

Proof
The proof is a direct consequence of Lemma 3.3 and Theorem 1.41 using the martingales
L̃ϕm(t) and M̃1,ϕ

m (t).
□

One way of establishing moment bounds that are uniform in m is to use preliminary
bounds to show explicit moment expressions. Here, the evolution equation for the killed
mollified SBM and the Wild sum representation of its solution comes into play.

Lemma 3.5
Assume that supm∈N⟨1(0,L)2 , µm⟩ <∞. Then it holds that for any T > 0,

sup
0≤t≤T

sup
m∈N

E
(〈

1(0,L)2 , Xm
t

〉4
)
<∞.

Proof
Let ϕ ∈ Dom(Hξm)∩C(α+2)+

d , ϕ ≥ 0, ϕ ̸= 0 and γ > 0 be sufficiently small. We have by
Lemma 2.40 and the results of Section 1.9 and 1.10 the representation

E (exp (−γ ⟨ϕ,Xm
t ⟩)) = exp

(
−
〈 ∞∑
n=1

amn (t, ·)γn, µm
〉)

=: f(γ),

for certain functions amn which also depend on ϕ. By Lemma 2.38, we are allowed to
exchange differentiation and integration and subsequently let γ ↓ 0 in the above. We
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can now compute:

d

dγ
f(γ) = −

〈 ∞∑
n=1

amn (t, ·)γn−1n, µm

〉
f(γ),

d2

dγ2 f(γ) =
〈 ∞∑
n=1

amn (t, ·)γn−1n, µm

〉2

f(γ)−
〈 ∞∑
n=2

amn (t, ·)γn−2n(n− 1), µm
〉
f(γ),

d3

dγ3 f(γ) = 3
〈 ∞∑
n=1

amn (t, ·)γn−1n, µm

〉〈 ∞∑
n=2

amn (t, ·)γn−2n(n− 1), µm
〉
f(γ)

−
〈 ∞∑
n=1

amn (t, ·)γn−1n, µm

〉3

f(γ)−
〈 ∞∑
n=3

amn (t, ·)γn−3n(n− 1)(n− 2), µm
〉
f(γ),

and

d4

dγ4 f(γ) = 3
〈 ∞∑
n=2

amn (t, ·)γn−2n(n− 1), µm
〉2

f(γ)

+ 4
〈 ∞∑
n=1

amn (t, ·)γn−1n, µm

〉〈 ∞∑
n=3

amn (t, ·)γn−3n(n− 1)(n− 2), µm
〉
f(γ)

− 6
〈 ∞∑
n=1

amn (t, ·)γn−1n, µm

〉2〈 ∞∑
n=2

amn (t, ·)γn−2n(n− 1), µm
〉
f(γ)

+
〈 ∞∑
n=1

amn (t, ·)γn−1n, µm

〉4

f(γ)−
〈 ∞∑
n=4

amn (t, ·)γn−4n(n− 1)(n− 2)(n− 3), µm
〉
f(γ).

Letting γ = 0 yields

d4

dγ4 f(0) = 12 ⟨am2 (t, ·), µm⟩2 + 24 ⟨am1 (t, ·), µm⟩ ⟨am3 (t, ·), µm⟩

− 12 ⟨am1 (t, ·), µm⟩2 ⟨am2 (t, ·), µm⟩+ ⟨am1 (t, ·), µm⟩4 − 24 ⟨am4 (t, ·), µm⟩ .

Since E(⟨ϕ,Xm
t ⟩4) = ∂4

γf(0), we only need to identify the functions am1 , . . . , am4 and show
that they are bounded uniformly in m. It turns out that

am1 (t, x) = = Tmt ϕ(x), am2 (t, x) = = −1
2

∫ t

0
Tms (Tmt−sϕ)2(x)ds,

am3 (t, x) = 2× = −
∫ t

0
Tms

((
−1

2

∫ t−s

0
Tmr (Tmt−s−rϕ)2dr

)
Tmt−sϕ

)
(x)ds,

am4 (t, x) = + 4× = −1
2

∫ t

0
Tms

(
−1

2

∫ t−s

0
Tmr (Tmt−s−rϕ)2dr

)2
(x)ds

− 2
∫ t

0
Tms

(
−1

2

∫ t−s

0
Tmr

((
−1

2

∫ t−s−r

0
Tmu (Tmt−s−r−uϕ)2du

)
Tmt−s−rϕ

)
drTmt−sϕ

)
(x)ds.

We get by the maximum principle Tms (Tmt−sϕ)2 ≤
∥∥Tmt−sϕ∥∥L∞T

m
t ϕ ≤

∥∥Tmt−sϕ∥∥L∞∥Tmt ϕ∥L∞

and similar bounds for the other terms. It follows by Lemma 1.53 that the RHSs are
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bounded uniformly in m and t ≤ T , which yields the first claim.
For the second claim, let as in Lemma 2.38, Xm

(0,L)2 ≤ Xm
(−L−1,L+1)2 be coupled killed

mollified SBMs on (0, L)2 and (−L−1, L+1)2 respectively. Let ϕ ∈ C2
c ((−L−1, L+1)2),

ϕ ≥ 0, be such that 1(0,L)2 ≤ ϕ. Then, ⟨1(0,L)2 , Xm
(0,L)2(t)⟩ ≤ ⟨ϕ,Xm

(−L−1,L+1)2(t)⟩ and
the fourth moment of the RHS is bounded uniformly in m and t ≤ T by the above. This
yields the claim.

□
We now show the tightness of the killed mollified SBMs (Xm)m∈N.

Lemma 3.6
Let for m ∈ N, Xm be a solution to the martingale problem for (Lm, D(Lm)) started in
µm such that supm∈N⟨1(0,L)2 , µm⟩ <∞. Then (Xm)m∈N is tight.

Proof
We first establish tightness of the evaluated processes by an application of Theorem 2.31
and then deduce the compact containment condition. Tightness of the measure-valued
processes then follows by Jakubowski’s criterion, Theorem 2.29.
Let ϕ ∈ C2

c ((0, L)2), ϕ ≥ 0. For any t > 0 and K > 0 it holds that

P(⟨ϕ,Xm
t ⟩ > K) ≤ 1

K
E(⟨ϕ,Xm

t ⟩) ≤
1
K

sup
m∈N

E(⟨ϕ,Xm
t ⟩).

Condition (20) now follows by Lemma 3.5. We compute for δ > 0,

E
(
⟨ϕ,Xm

δ −Xm
0 ⟩

2
)

= E
(∣∣∣Lϕm(δ, δ)− Lϕm(0, δ) + ⟨Tmδ ϕ− ϕ, µm⟩

∣∣∣2)
≲
∫ δ

0
E
(〈

(Tmδ−rϕ)2, Xm
r

〉)
dr + ⟨Tmδ ϕ− ϕ, µm⟩2 .

We have for δ < 1,

sup
m∈N

∫ δ

0
E
(〈

(Tmδ−rϕ)2, Xm
r

〉)
dr ≤ δ sup

m∈N
sup
r≤1
∥Tmr ϕ∥2L∞ sup

m∈N
sup

0≤r≤1
E(⟨1(0,L)2 , Xm

r ⟩)

and by Lemma 1.53,

⟨Tmδ ϕ− ϕ, µm⟩
2 ≤ δα+2(Cm1 exp(Cm2 )∥ϕ∥Cα+2

d
)2⟨1(0,L)2 , µm⟩2.

It follows that

lim
δ→0

sup
m∈N

E
(
⟨ϕ,Xm

δ −Xm
0 ⟩

2
)

= 0. (26)

Next we get

E(
〈
ϕ,Xm

t+u −Xm
t

〉2 ∣∣Fmt )

= E
(∣∣∣Lϕm(t+ u, t+ u)− Lϕm(t, t+ u) + ⟨Tmu ϕ− ϕ,Xm

t ⟩
∣∣∣2∣∣∣Fmt ) (27)

≲
∫ t+u

t
E(⟨(Tmt+u−rϕ)2, Xm

r ⟩|Fmt )dr + ⟨Tmu ϕ− ϕ,Xm
t ⟩

2 .
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3.1 The White Noise Limit: Killed Rough Super Brownian Motion

Therefore,

E
((〈

ϕ,Xm
t+u −Xm

t

〉
∧ 1
)2 (〈

ϕ,Xm
t −Xm

t−u
〉
∧ 1
)2)

≲ E
((∫ t+u

t
E(⟨(Tmt+u−rϕ)2, Xm

r ⟩|Fmt )dr
)2)1/2

E
(〈
ϕ,Xm

t −Xm
t−u
〉2)1/2

+ E
(
⟨Tmu ϕ− ϕ,Xm

t ⟩
4
)1/2

E
(〈
ϕ,Xm

t −Xm
t−u
〉2)1/2

.

By taking the expectation of (27), uniformly in m,

E
(〈
ϕ,Xm

t −Xm
t−u
〉2)1/2

≲
(
u+ uα+2

)1/2
.

As above this yields that uniformly in m,

E
((〈

ϕ,Xm
t+u −Xm

t

〉
∧ 1
)2 (〈

ϕ,Xm
t −Xm

t−u
〉
∧ 1
)2)

≲ u
(
u+ uα+2

)1/2
+ uα+2

(
u+ uα+2

)1/2
.

The decay in u is of order greater than 1, which yields by Theorem 2.31 the tightness of
⟨ϕ,Xm⟩, ϕ ∈ C2

c ((0, L)2), ϕ ≥ 0.
In order to establish the compact containment condition, we argue as follows. By the
tightness for ⟨ϕ,Xm⟩ established above, there exists for any ε > 0 some C(ϕ, ε) ⊂
D([0,∞),R) compact such that for any m ∈ N, P(⟨ϕ,Xm⟩ ∈ C(ϕ, ε)) ≥ 1 − ε. By
[EK86, p. 152, Problem 16], there exists for any T > 0 some K(T, ϕ, ε) > 0 such that
for any m ∈ N,

P
(

sup
0≤t≤T

⟨ϕ,Xm
t ⟩ < K(T, ϕ, ε)

)
≥ P(⟨ϕ,Xm⟩ ∈ C(ϕ, ε)) ≥ 1− ε.

Let Xm
(0,L)2 ≤ Xm

(−L−1,L+1)2 be coupled, killed mollified SBMs on (0, L)2, (−L−1, L+1)2

respectively. Let ϕ ∈ C2
c ((−L− 1, L+ 1)2), ϕ ≥ 0, such that 1(0,L)2 ≤ ϕ. Then for any

m ∈ N,

P
(

sup
0≤t≤T

⟨1(0,L)2 , Xm
(0,L)2(t)⟩ < K(T, ϕ, ε)

)

≥ P
(

sup
0≤t≤T

⟨ϕ,Xm
(−L−1,L+1)2(t)⟩ < K(T, ϕ, ε)

)
≥ 1− ε.

Therefore we can choose for any T, ε > 0, K(T, ε) := K(T, ϕ, ε) > 0 such that the com-
pact containment condition holds, using the Cc-vaguely relatively compact set of Lemma
2.30 given by B = {µ ∈ M((0, L)2)|⟨1(0,L)2 , µ⟩ < K(T, ε)}. Tightness of (Xm)m∈N now
follows by Jakubowski’s criterion, Theorem 2.29, using that the functions µ 7→ ⟨ϕ, µ⟩
with ϕ ∈ C2

c ((0, L)2), ϕ ≥ 0, are continuous by the definition of the Cc-vague topology,
closed under addition, and also separating points.

□
We can now show the convergence of the generators on subsubsequences.
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3.2 Moment Bounds for the Killed Rough Super Brownian Motion

Theorem 3.7
Conditions (16), (17) and (18) of Theorem 2.22 hold for the martingale problems for
((Lm, D(Lm)))m∈N and (L,D(L)) started in µm, µ ∈ MF ((0, L)2) respectively such that
supm∈N⟨1(0,L)2 , µm⟩ <∞ and µm → µ in M((0, L)2).

Proof
The proof is similar to, but easier than, the proof of Theorem 2.37, now using Lemma
3.5, Lemma 3.6 and (11).

□
To complete the construction, we need to show uniqueness of the limiting martingale
problem. Before we do so, we again need to establish some moment bounds in order to
find more martingales. Also, we impose the same assumption as before:

Assumption: Whenever we write µ ∈MF ((0, L)2) as the starting point of a killed rough
SBM, we implicitly assume that there exist some µm ∈ MF ((0, L)2), m ∈ N, such that
it holds that supm∈N⟨1(0,L)2 , µm⟩ <∞ and µm → µ, Cc-vaguely as m→∞.

3.2 Moment Bounds for the Killed Rough Super Brownian Motion

We recall that convergence of the generators and relative compactness is already enough
to assert that for some subsequence Xm → X as m→∞, where X is a solution to the
martingale problem for (L,D(L)). A moment bound for X is given by the following:

Lemma 3.8
Let X be a solution to the martingale problem for (L,D(L)) started in µ ∈MF ((0, L)2).
Then it holds that for T > 0,

sup
0≤t≤T

E
(〈

1(0,L)2 , Xt

〉4
)
<∞.

Also, X is actually a finite measure a.s..

Proof
The proof follows exactly as in Lemma 2.38.

□

3.3 Continuity and Uniqueness of the Killed Rough Super Brownian
Motion

In this section we show the continuity and uniqueness of solutions to the martingale
problem for the killed rough Super Brownian Motion.
Continuity follows immediately from the continuity of the killed mollified SBM.

Lemma 3.9
Let X be a killed rough Super Brownian Motion. Then X is almost surely continuous.

95



3.3 Continuity and Uniqueness of the Killed Rough Super Brownian Motion

Proof
Let (Xm)m∈N be a sequence of killed mollified Super Brownian Motions such that Xm →
X weakly. By Theorem 2.42 it suffices to show that J(Xm) → 0 weakly as m → ∞.
However, Xm is almost surely continuous, therefore the LHS is 0 and the claim follows.

□
Next we show the uniqueness of the killed rough SBM by extending the methods presen-
ted in [PR19] to our setting. Due to the singularity of the white noise and the Dirichlet
boundary condition, the argument is more involved than the one for the killed mollified
SBM.

Lemma 3.10
Our killed rough Super Brownian Motion coincides with the one from [Ros19, Theorem
3.8]. In particular for any ϕ ∈ C1([0,∞), DHξ

) such that Hξϕ ∈ C([0,∞), Cα+2
d ),

L̃ϕ(t) := ⟨ϕ(t), Xt⟩ − ⟨ϕ(0), X0⟩ −
∫ t

0
⟨Hξϕ(s) + ∂sϕ(s), Xs⟩ ds

is a continuous, square-integrable martingale with quadratic variation

⟨L̃ϕ⟩t =
∫ t

0
⟨ϕ(s)2, Xs⟩ds.

Proof
Using the bounds established in Lemma 3.8, we arrive at the claim exactly as in Lemma
3.3.

□
Next we extend this martingale problem to solutions to the backwards PAM with forcing:

Lemma 3.11
Let t > 0, u0 ∈ C(α+2)+

d , u0 ≥ 0, u0 ̸= 0, and f ∈ C([0, t], C(α+2)+
d ), f ≥ 0, f ̸= 0. Let ut

be a mild solution to{
(∂s + Hξ)ut = f in (0, t)× (0, L)2,

ut(t) = u0 in [0, L]2, ut = 0 on [0, t]× ∂[0, L]2,

as constructed in Section 1.8. Then it holds that for s ≤ t,

Lu0,f (s, t) := ⟨ut(s), Xs⟩ − ⟨ut(0), X0⟩ −
∫ s

0
⟨f(r), Xr⟩dr,

is a continuous, square-integrable martingale with quadratic variation

⟨Lu0,f (·, t)⟩s =
∫ s

0
⟨(ut(r))2, Xr⟩dr.
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3.3 Continuity and Uniqueness of the Killed Rough Super Brownian Motion

Proof
First let uk0, fk and utk be as in Section 1.8. Then utk is a pointwise solution to the
backwards PAM with forcing, hence by Lemma 3.10,

Lu
k
0 ,f

k(s, t) := ⟨utk(s), Xs⟩ − ⟨utk(0), X0⟩ −
∫ s

0
⟨fk(r), Xr⟩dr,

is a continuous, square-integrable martingale with quadratic variation

⟨Luk
0 ,f

k(·, t)⟩s =
∫ s

0
⟨(utk(r))2, Xr⟩dr.

We have shown that utk → ut in C([0, t], Cα+2
d ). Therefore the claim follows by [EK86,

p. 174, Equation (3.4)], the dominated convergence theorem and the bounds of Lemma
3.8.

□
With the martingale problem above we can find exponential martingales by an applica-
tion of Itô’s formula:

Lemma 3.12
Let ψ ∈ C(α+2)+

d , ψ ≥ 0, ψ ̸= 0, t > 0, and γ > 0 be sufficiently small. Then it holds
that the process for s ≤ t given by

Eγψ(s, t) := exp(−⟨Ut−s(γψ), Xs⟩)− exp(−⟨Ut(γψ), X0⟩)

is a continuous, bounded martingale.

Proof
Let ut, u0 and f be as in Lemma 3.11. We apply Itô’s formula to exp(−x) to get

exp(−⟨ut(s), Xs⟩)− exp(−⟨ut(0), X0⟩)

= −
∫ s

0
exp(−⟨ut(r), Xr⟩)dLu0,f (r, t)−

∫ s

0
exp(−⟨ut(r), Xr⟩)⟨f(r), Xr⟩dr

+ 1
2

∫ s

0
exp(−⟨ut(r), Xr⟩)⟨(ut(r))2, Xr⟩dr.

By plugging in f(r) = 1/2(Ut−r(γψ))2, ut(r) = Ut−r(γψ), we get that

Eγψ(s, t) = exp(−⟨Ut−s(γψ), Xs⟩)− exp(−⟨Ut(γψ), X0⟩)

= −
∫ s

0
exp(−⟨Ut−r(γψ), Xr⟩)dLu0,f (r, t)

is a local martingale and a proper martingale by the conjectured non-negativity of U(γψ).
□

The uniqueness of the killed rough Super Brownian Motion now follows as before:
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4 Persistence of the Killed Mollified Super Brownian Motion

Lemma 3.13
Any solution to the martingale problem for (L,D(L)) started in µ ∈ MF ((0, L)2) is
unique.

Proof
The proof follows as in Lemma 2.41 using Lemma 3.12.

□

4 Persistence of the Killed Mollified Super Brownian Mo-
tion

In this section we prove the persistence of the killed mollified Super Brownian Motion
for sufficiently large m and L. This is based on a spectral decomposition using the
Eigenfunctions of Hξm , the fact that the principal Eigenvalue is positive for m and
L large enough and the Krein-Rutman theorem. Those ideas were inspired by [PR19,
Corollary 5.6].

Lemma 4.1
The operator Hξm : H2

0 → L2 admits the Eigenfunctions (uk(ξm))k∈N and Eigenvalues
(λk(ξm))k∈N. The Eigenfunctions furthermore lie in Dom(Hξm).

Proof
The first claim follows from Theorem 1.29 using that Dd,γ

ξm
= H2

0 . Assume u ∈ H2
0 , then

ũ ∈ B2
2,2 and it follows from the Besov embedding theorem, [GIP15, Lemma A.2], that

ũ ∈ C1. Consequently, u ∈ C0((0, L)2). Next, we have for any k ∈ N, at least a.e.,{
Hξmuk(ξm) = λk(ξm)uk(ξm) in (0, L)2,

uk(ξm) = 0 on ∂[0, L]2.

It follows by [Eva10, Theorem 6.3.1.3], that uk(ξm) ∈ C2((0, L)2). One may characterise

C0((0, L)2) = {f ∈ C((0, L)2)|∀ε > 0 ∃K ⊂ (0, L)2 compact f ↾(0,L)2\K< ε}.

This yields that Hξmuk(ξm) ∈ C0((0, L)2) as well.
□

Next we show that the Eigenfunction u1(ξm) to the principal Eigenvalue λ1(ξm) is pos-
itive in the interior.

Lemma 4.2
It holds that u1(ξm) > 0 in (0, L)2.

Proof
We can choose by [CvZ19, Lemma 5.12], A ≥ max{supx∈[0,L]2 |ξm(x)− cm|, λ1(ξm)}
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4 Persistence of the Killed Mollified Super Brownian Motion

sufficiently large such that (A−Hξm)−1 : L2 → H2
0 exists, is self-adjoint and compact.

Let K = {f ∈ L2((0, L)2)|f ≥ 0 a.e.}. This set is a total cone by [Dei85, Example 19.2].
In order to apply the Krein-Rutman theorem, [Dei85, Theorem 19.2], we first show that
(Hξm −A)−1K ⊂ K.
Proof of the claim: Let f ∈ K and (A−Hξm)−1f = g. Then g ∈ H2

0 and (A−Hξm)g = f .
Let ϕ ∈ C∞

c ((0, L)2). By the definition of weak derivatives,

⟨∇g,∇ϕ⟩L2 + ⟨(−(ξm − cm) +A)g, ϕ⟩L2 = ⟨f, ϕ⟩L2 .

By approximation, the identity carries over to ϕ ∈ H1
0 . Let ϕ ≥ 0, then

⟨∇g,∇ϕ⟩L2 + ⟨(−(ξm − cm) +A)g, ϕ⟩L2 ≥ 0.

By [GT01, Theorem 8.1], it follows that g ≤ 0 everywhere. Consequently, (Hξm −
A)−1f = −g ≥ 0, which proves the claim.
The principal Eigenfunction of (Hξm − A)−1 is u1(ξm), hence by the Krein-Rutman
theorem, u1(ξm) ≥ 0 a.e. and by regularity, u1(ξm) ≥ 0 everywhere. We get (Hξm −
A)u1(ξm) = (λ1(ξm)−A)u1(ξm) ≤ 0, since (λ1(ξm)−A) ≤ 0. By [GT01, Theorem 9.6],
−u1(ξm) cannot achieve a non-negative maximum in (0, L)2. Consequently, u1(ξm) > 0
in (0, L)2.

□
We now establish that the principal Eigenvalue λ1(ξm) is positive for m and L sufficiently
large.

Lemma 4.3
Let λ > 0. Then there exist m,L ∈ N sufficiently large, L = 2n for some n ∈ N, such
that λ1(ξm) > λ.

Proof
Let λ1(ξ, L) be the principal Eigenvalue of the Continuous Anderson Hamiltonian Hξ

on [0, L]2. By Theorem 1.30 it holds that a.s. limL→∞,L=2n,n∈N λ1(ξ, L)/ log(L) = 2/ρ1,
with some ρ1 > 0. We assume w.l.o.g. that we consider a realisation ξ(ω), where this
holds.
Note that by [CvZ19, 5.9], it follows that Hξm = ∆ + ξm − cm can indeed be expressed
as in Definition 1.26. By Theorem 1.29, there exists some N > 0 such that for λ1(ξ) :=
λ1(ξ, L),|λ1(ξ)− λ1(ξm)| ≲ ∥ξ − ξm∥Xα

n
(1 + ∥ξ∥Xα

n
+ ∥ξm∥Xα

n
)N . As ξm → ξ in Xαn ,

∥ξm∥Xα
n
≤ ∥ξ∥Xα

n
+ 1 for m sufficiently large. Therefore we can choose L = 2n, n ∈ N,

and m ∈ N such that λ1(ξm) > λ.
□

Our main result, which states that killed mollified SBM is persistent if m and L are
sufficiently large, is the following:

Theorem 4.4 Cf. [PR19, Corollary 5.6]
Let λ > 0 and let L′ < L, m be sufficiently large depending on λ. Assume 0 ̸= µm ∈
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4 Persistence of the Killed Mollified Super Brownian Motion

MF ((0, L)2). It holds that the killed mollified Super Brownian Motion Xm started in µm
is persistent: For any ϕ ∈ C∞

c ((0, L)2) such that ϕ ≥ 0, ϕ ̸= 0, a+[0, L′]2 ⊂⊂ Supp(ϕ) for
some a ∈ [0, L]2, and µ(a+ [0, L′]2) > 0, it holds that P(limt→∞ e−λt ⟨ϕ,Xm

t ⟩ =∞) > 0.

Proof
We denote λ1 := λ1(ξm) and u1 := u1(ξm). We have for s < t by Lemma 3.4, Lemma
4.1 and Lemma 4.2, E(⟨u1, X

m
t ⟩ |Fms ) =

〈
Tmt−su1, X

m
s

〉
= ⟨e(t−s)λ1u1, X

m
s ⟩. Therefore,

E1(s) := ⟨e−λ1su1, X
m
s ⟩ is a martingale. By considering M̃1,exp(−λ1·)u1

m , we get that

E((E1(t)− E1(0))2) =
∫ t

0
E(⟨(e−λ1su1)2, Xm

s ⟩)ds.

By an application of the Stone-Weierstrass theorem for locally compact spaces, there
exist some ψk ∈ C∞

c ((0, L)2), k ∈ N, such that ψk → (e−λ1su1)2 in C0((0, L)2). Naturally
ψk ∈ Dom(Hξm) and by Lemma 3.4,

E(⟨(e−λ1su1)2, Xm
s ⟩)← E(⟨ψk, Xm

s ⟩) = ⟨Tms ψk, Xm
0 ⟩ → ⟨Tms ((e−λ1su1)2), Xm

0 ⟩.

This yields that

E((E1(t)− E1(0))2) =
∫ t

0
⟨Tms (e−λ1su1)2, Xm

0 ⟩ds ≤
∫ t

0
∥u1∥L∞e

−λ1s ⟨u1, X
m
0 ⟩ ds ≲ 1.

It follows that E1(t) is an L2-bounded martingale and hence converges in L2(P) and
almost surely to some random variable E1(∞). Specifically, E1(∞) ≥ 0 a.s. and since
E(E1(∞)) = E(E1(0)) = E(⟨u1, X

m
0 ⟩) > 0, it follows that P(E1(∞) > 0) > 0. Let

ϕ ∈ C∞
c ((0, L)2) be non-negative and not identically zero. Assume that the support of

ϕ is large enough, i.e. the compact embedding a + [0, L′]2 ⊂⊂ Supp(ϕ) holds for some
a ∈ [0, L]2 and L′ large enough such that λ1(ξm, L′) > λ, with λ1(ξm, L′) the principal
Eigenvalue of Hξm on a + [0, L′]2. Let u1(ξm, L′) denote the associated Eigenfunction.
The translation is harmless by [CvZ19, Lemma 7.4].
Let C = supa+(0,L′)2 u1(ξm, L′)/ infa+(0,L′)2 ϕ. Then 1a+(0,L′)2 ≤ ϕ/ infa+(0,L′)2 ϕ and
u1(ξm, L′)/C ≤ 1a+(0,L′)2 infa+(0,L′)2 ϕ. Let Xm

a+(0,L′)2 and Xm
(0,L)2 be two coupled, killed

mollified SBMs on a+ (0, L′)2 and (0, L)2 respectively.
We get 1/C⟨u1(ξm, L′), Xm

a+(0,L′)2(t)⟩ ≤ ⟨ϕ,Xm
(0,L)2(t)⟩. Therefore,

P( lim
t→∞

e−λt⟨ϕ,Xm
(0,L)2(t)⟩ =∞) ≥ P( lim

t→∞
e−λt⟨u1(ξm, L′), Xm

a+(0,L′)2(t)⟩ =∞)

≥ P(E1,L′(∞) > 0) > 0,

where E1,L′ is defined as the E1 above, now for the killed mollified SBM Xm
a+(0,L′)2 on

a+ (0, L′)2. This yields the claim for Xm
(0,L)2 on (0, L)2.

□

Remark 4.5
In a more recent version of [PR19], Perkowski and Rosati were able to establish the same
claim for the killed rough SBM but without the support assumption on ϕ. The version
above was suggested by T. Rosati.
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5 Index of Notation and Martingales

5 Index of Notation and Martingales

5.1 Index of Notation

• N = {1, 2, . . . }, N0 = {0, 1, 2, . . . }.

• Td2L, where L > 0, d ∈ N: The torus (R/(2LZ))d.

• CTX, CαTX, where X is some normed space, T > 0, α ∈ (0, 1]: The space of
(Hölder-) continuous functions [0, T ] ∋ t 7→ v(t) ∈ X, equipped with ∥v∥CTX

=
supt≤T ∥v(t)∥X and ∥v∥Cα

TX
= ∥v∥CTX

+ sup0≤s<t≤T ∥v(t)− v(s)∥X/(t− s)α. If X
is merely a topological space, then we still define CTX but drop the norm.

• C1(I,X), for some interval I ⊂ R and X some Banach space: The space of differen-
tiable functions such that the derivative lies in C(I,X) with continuous extension
where the boundary of the interval is closed.

• C1,2((0, T )×U), where U ⊂ R2 is some open set: The space of real-valued functions
whose first temporal and second spatial derivatives exist in U and are continuous.

• S(Rd): The space of tempered distributions.

• C: The complex numbers with imaginary unit i. ·C: Complex conjugation.

• ⟨f, g⟩L2(D,C) =
∫
D f(x)g(x)Cdx, where D ⊂ Rd, d ∈ N.

• A, where A is some subset of a topological space: The closure.

• Cc(A): The continuous functions with compact support in the interior of A.

• C0(A): The continuous functions vanishing at ∂A.

• a ≲ b: The inequality a ≤ Cb, where C > 0 does not depend on a, b. We may
include subscripts to emphasize dependencies of C.

• S , Sp: The spectrum and the point spectrum.

• FTd
2L

: The Fourier transform on the torus.

• Pt for t ≥ 0: The heat semigroup on [0, L]2 with Dirichlet boundary conditions.

• Tt, Tmt for t ≥ 0: The semigroup for the continuous (mollified) Parabolic Anderson
Model on [0, L]2 with Dirichlet boundary conditions.

• B(A): The Borel sigma algebra of some topological space A.

• M(A): The space of Radon measures on the Polish space A, equipped with the
Cc-vague topology. Integration of a function f with a measure µ is denoted by
⟨f, µ⟩.

101



5.2 Index of Martingales

• MF (A): The space of finite Radon measures on the Polish space A, equipped with
the Cc-vague topology.

• M1(A): The space of Borel probability measures on the Polish space A, equipped
with the topology of weak convergence.

5.2 Index of Martingales

Let n,m ∈ N with n sufficiently large.
•Let Y n,m be a solution to the martingale problem for (Lyn,m, D(Lyn,m)), where

D(Lyn,m) :=
{

exp(⟨log(g), ·⟩)|g ∈ Dom(Ga
n), ∥g∥L∞ ≤ 1, inf

(0,L)2
g > 0

}
where on this set the generator is given by

Lyn,m exp(⟨log(g), ·⟩)(µ) :=
〈
Ga
ng + Φn,m(g)− g

g
, µ

〉
exp(⟨log(g), µ⟩), µ ∈ E.

Reference: Definition 2.8.
•Let Xn,m

t := 1/nY n,m
nt be associated to the martingale problem for (Ln,m, D(Ln,m)).

Reference: Definition 2.12.
•Let Xm be a killed mollified Super Brownian Motion, i.e. a solution to the martingale
problem for (Lm, D(Lm)), where

D(Lm) := {exp(−⟨ϕ, ·⟩)|ϕ ∈ Dom(Hξm), ϕ ≥ 0}

where for ϕ ∈ Dom(Hξm), ϕ ≥ 0, the generator is given by

Lm exp(−⟨ϕ, ·⟩)(µ) :=
〈
−Hξmϕ+ 1

2ϕ
2, µ

〉
exp(−⟨ϕ, µ⟩).

Reference: Definition 2.34.
•Let X be a killed rough Super Brownian Motion, i.e. a solution to the martingale
problem for (L,D(L)), where

D(L) := {exp(−⟨ϕ, ·⟩)|ϕ ∈ DHξ
}

where for ϕ ∈ DHξ
the generator is given by

L exp(−⟨ϕ, ·⟩)(µ) :=
〈
−Hξϕ+ 1

2ϕ
2, µ

〉
exp(−⟨ϕ, µ⟩).

Reference: Definition 3.1.
For martingales derived from those fundamental processes, we use the following naming
convention: L stands for linear martingales, E stands for exponential martingales, indices
appear according to the superscript of X, the superscript ϕ represent the function the
martingale is associated to, ·̃ represents time-dependent martingales, two time variables
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(s, t) represents that we used semigroups to remove generators. The superscripts 1, 2, 3
refer to the (local) martingales M derived in the proofs of Lemma 2.21 and Lemma 3.3.
The martingales below are ordered by first appearance.
•Let ϕ ∈ C2

c ((0, L)2), ϕ ≥ 0. Then

Lϕn,m(t) := ⟨ϕ,Xn,m
t ⟩ − ⟨ϕ,Xn,m

0 ⟩ −
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

is a martingale with predictable quadratic variation

⟨Lϕn,m⟩t =
∫ t

0

〈 2
n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
ds.

Reference: Lemma 2.21.
•Further,

M1,ϕ
n,m(t) := ⟨ϕ,Xn,m

t ⟩2 − ⟨ϕ,Xn,m
0 ⟩2

−
∫ t

0

〈 2
n
∇ϕT∇ϕ+ ϕ2, Xn,m

s

〉
+ 2 ⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩ ds

is a martingale. Reference: Proof of Lemma 2.21.
•Further,

M2,ϕ
n,m(t) :=

(
⟨ϕ,Xn,m

t ⟩ −
∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

)
⟨ϕ,Xn,m

0 ⟩

is a martingale. Reference: Proof of Lemma 2.21.
•Further,

M3,ϕ
n,m(t) := 2

∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ⟨ϕ,Xn,m

s ⟩ ds+
(∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

)2

− 2 ⟨ϕ,Xn,m
t ⟩

∫ t

0
⟨Hξmϕ,X

n,m
s ⟩ ds

is a local martingale. Reference: Proof of Lemma 2.21.
•Further for ϕ ∈ Dom(Hξm), ϕ ≥ 0, fn := 1− ϕ/n,

En log(fn)
n,m (t) : = exp(⟨log(fn), nXn,m

t ⟩)− exp(⟨log(fn), nXn,m
0 ⟩)

−
∫ nt

0

〈
Ga
nfn + Φn,m(fn)− fn

fn
, nXn,m

s/n

〉
exp

(〈
log(fn), nXn,m

s/n

〉)
ds

is a martingale. Reference: Proof of Lemma 2.37.
•Assume that ϕ ∈ C1([0,∞), C0((0, L)2)), ϕ(t) ∈ Dom(Hξm) for any t > 0 and ϕ ≥ 0.
Also assume that Hξmϕ ∈ C([0,∞), C0((0, L)2)). Then

Ẽϕm(t) := exp(−⟨ϕ(t), Xm
t ⟩)− exp(−⟨ϕ(0), Xm

0 ⟩)

−
∫ t

0

〈
−Hξmϕ(s) + 1

2ϕ
2(s)− ∂sϕ(s), Xm

s

〉
exp(−⟨ϕ(s), Xm

s ⟩)ds
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is a martingale. Reference: Lemma 2.39.
•Let ψ ∈ Dom(Hξm) ∩ C(α+2)+

d , ψ ≥ 0, ψ ̸= 0, t > 0, and γ > 0 be sufficiently small.
Then it holds that the process for s ≤ t given by

Eγψm (s, t) := exp(−
〈
Umt−s(γψ), Xm

s

〉
)− exp(−⟨Umt (γψ), Xm

0 ⟩)

is a bounded martingale. Reference: Lemma 2.40.
•Assume that ϕ ∈ C1([0,∞), C0((0, L)2)), ϕ(t) ∈ Dom(Hξm) for any t > 0 and ϕ ≥ 0.
Also assume that Hξmϕ ∈ C([0,∞), C0((0, L)2). Then

L̃ϕm(t) = ⟨ϕ(t), Xm
t ⟩ − ⟨ϕ(0), Xm

0 ⟩ −
∫ t

0
⟨Hξmϕ(s) + ∂sϕ(s), Xm

s ⟩ ds

is a continuous, square-integrable martingale with quadratic variation

⟨L̃ϕm⟩t =
∫ t

0
⟨ϕ2(s), Xm

s ⟩ds.

Reference: Lemma 3.3.
•Further,

M̃1,ϕ
m (t) := ⟨ϕ(t), Xm

t ⟩
2 − ⟨ϕ(0), Xm

0 ⟩
2

−
∫ t

0
⟨ϕ2(s), Xm

s ⟩+ 2 ⟨Hξmϕ(s) + ∂sϕ(s), Xm
s ⟩ ⟨ϕ(s), Xm

s ⟩ ds

is a martingale. Reference: Lemma 3.3.
•Further,

M̃2,ϕ
m (t) :=

(
⟨ϕ(t), Xm

t ⟩ −
∫ t

0
⟨Hξmϕ(s) + ∂sϕ(s), Xm

s ⟩ ds
)
⟨ϕ(0), Xm

0 ⟩

is a martingale. Reference: Lemma 3.3.
•Further,

M̃3,ϕ
m (t) := 2

∫ t

0
⟨Hξmϕ(s) + ∂sϕ(s), Xm

s ⟩ ⟨ϕ(s), Xm
s ⟩ ds

+
(∫ t

0
⟨Hξmϕ(s) + ∂sϕ(s), Xm

s ⟩ ds
)2
− 2 ⟨ϕ(t), Xm

t ⟩
∫ t

0
⟨Hξmϕ(s) + ∂sϕ(s), Xm

s ⟩ ds

is a local martingale. Reference: Lemma 3.3.
•Let t > 0, ϕ ∈ Dom(Hξm), ϕ ≥ 0. The process for s ≤ t given by

Lϕm(s, t) :=
〈
Tmt−sϕ,X

m
s

〉
− ⟨Tmt ϕ,Xm

0 ⟩

is a continuous, square-integrable martingale with quadratic variation given by

⟨Lϕm(·, t)⟩s =
∫ s

0
⟨(Tmt−rϕ)2, Xm

r ⟩dr.
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Reference: Lemma 3.4.
•Further,

M1,ϕ
m (s, t) :=

〈
Tmt−sϕ,X

m
s

〉2 − ⟨Tmt ϕ,Xm
0 ⟩

2 −
∫ s

0
⟨(Tmt−rϕ)2, Xm

r ⟩dr

is a martingale. Reference: Lemma 3.4.
•Let ϕ ∈ C1([0,∞), DHξ

) be such that Hξϕ ∈ C([0,∞), Cα+2
d ). Then,

L̃ϕ(t) := ⟨ϕ(t), Xt⟩ − ⟨ϕ(0), X0⟩ −
∫ t

0
⟨Hξϕ(s) + ∂sϕ(s), Xs⟩ ds

is a continuous, square-integrable martingale with quadratic variation

⟨L̃ϕ⟩t =
∫ t

0
⟨ϕ(s)2, Xs⟩ds.

Reference: Lemma 3.10.
•Let t > 0, u0 ∈ C(α+2)+

d , u0 ≥ 0, u0 ̸= 0, and f ∈ C([0, t], C(α+2)+
d ), f ≥ 0, f ̸= 0. Let

ut be a mild solution to{
(∂s + Hξ)ut = f in (0, t)× (0, L)2,

ut(t) = u0 in [0, L]2, ut = 0 on [0, t]× ∂[0, L]2,

as constructed in Section 1.8. Then it holds that for s ≤ t,

Lu0,f (s, t) := ⟨ut(s), Xs⟩ − ⟨ut(0), X0⟩ −
∫ s

0
⟨f(r), Xr⟩dr

is a continuous, square-integrable martingale with quadratic variation

⟨Lu0,f (·, t)⟩s =
∫ s

0
⟨(ut(r))2, Xr⟩dr.

Reference: Lemma 3.11.
•Let ψ ∈ C(α+2)+

d , ψ ≥ 0, ψ ̸= 0, t > 0, and γ > 0 be small enough. Then it holds that
the process for s ≤ t given by

Eγψ(s, t) := exp(−⟨Ut−s(γψ), Xs⟩)− exp(−⟨Ut(γψ), X0⟩)

is a continuous, bounded martingale. Reference: Lemma 3.12.
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